Skip to content
Snippets Groups Projects
Commit b5ad725c authored by Erik Nygren's avatar Erik Nygren :bullettrain_front:
Browse files

Update intro_observationbuilder.rst

parent c08977d5
No related branches found
No related tags found
No related merge requests found
......@@ -173,90 +173,90 @@ All you need to do in order to render your custom observation is to populate :c
.. _example: https://gitlab.aicrowd.com/flatland/flatland/blob/master/examples/custom_observation_example.py#L110
.. code-block:: python
class ObservePredictions(TreeObsForRailEnv):
"""
We use the provided ShortestPathPredictor to illustrate the usage of predictors in your custom observation.
We derive our observation builder from TreeObsForRailEnv, to exploit the existing implementation to compute
the minimum distances from each grid node to each agent's target.
This is necessary so that we can pass the distance map to the ShortestPathPredictor
Here we also want to highlight how you can visualize your observation
"""
def __init__(self, predictor):
super().__init__(max_depth=0)
self.observation_space = [10]
self.predictor = predictor
def reset(self):
# Recompute the distance map, if the environment has changed.
super().reset()
def get_many(self, handles=None):
'''
Because we do not want to call the predictor seperately for every agent we implement the get_many function
Here we can call the predictor just ones for all the agents and use the predictions to generate our observations
:param handles:
:return:
'''
self.predictions = self.predictor.get(custom_args={'distance_map': self.distance_map})
self.predicted_pos = {}
for t in range(len(self.predictions[0])):
pos_list = []
for a in handles:
pos_list.append(self.predictions[a][t][1:3])
# We transform (x,y) coodrinates to a single integer number for simpler comparison
self.predicted_pos.update({t: coordinate_to_position(self.env.width, pos_list)})
observations = {}
# Collect all the different observation for all the agents
for h in handles:
observations[h] = self.get(h)
return observations
def get(self, handle):
'''
Lets write a simple observation which just indicates whether or not the own predicted path
overlaps with other predicted paths at any time. This is useless for the task of navigation but might
help when looking for conflicts. A more complex implementation can be found in the TreeObsForRailEnv class
Each agent recieves an observation of length 10, where each element represents a prediction step and its value
is:
- 0 if no overlap is happening
- 1 where n i the number of other paths crossing the predicted cell
:param handle: handeled as an index of an agent
:return: Observation of handle
'''
observation = np.zeros(10)
# We are going to track what cells where considered while building the obervation and make them accesible
# For rendering
visited = set()
for _idx in range(10):
# Check if any of the other prediction overlap with agents own predictions
x_coord = self.predictions[handle][_idx][1]
y_coord = self.predictions[handle][_idx][2]
# We add every observed cell to the observation rendering
visited.add((x_coord, y_coord))
if self.predicted_pos[_idx][handle] in np.delete(self.predicted_pos[_idx], handle, 0):
# We detect if another agent is predicting to pass through the same cell at the same predicted time
observation[handle] = 1
# This variable will be access by the renderer to visualize the observation
self.env.dev_obs_dict[handle] = visited
return observation
class ObservePredictions(TreeObsForRailEnv):
"""
We use the provided ShortestPathPredictor to illustrate the usage of predictors in your custom observation.
We derive our observation builder from TreeObsForRailEnv, to exploit the existing implementation to compute
the minimum distances from each grid node to each agent's target.
This is necessary so that we can pass the distance map to the ShortestPathPredictor
Here we also want to highlight how you can visualize your observation
"""
def __init__(self, predictor):
super().__init__(max_depth=0)
self.observation_space = [10]
self.predictor = predictor
def reset(self):
# Recompute the distance map, if the environment has changed.
super().reset()
def get_many(self, handles=None):
'''
Because we do not want to call the predictor seperately for every agent we implement the get_many function
Here we can call the predictor just ones for all the agents and use the predictions to generate our observations
:param handles:
:return:
'''
self.predictions = self.predictor.get(custom_args={'distance_map': self.distance_map})
self.predicted_pos = {}
for t in range(len(self.predictions[0])):
pos_list = []
for a in handles:
pos_list.append(self.predictions[a][t][1:3])
# We transform (x,y) coodrinates to a single integer number for simpler comparison
self.predicted_pos.update({t: coordinate_to_position(self.env.width, pos_list)})
observations = {}
# Collect all the different observation for all the agents
for h in handles:
observations[h] = self.get(h)
return observations
def get(self, handle):
'''
Lets write a simple observation which just indicates whether or not the own predicted path
overlaps with other predicted paths at any time. This is useless for the task of navigation but might
help when looking for conflicts. A more complex implementation can be found in the TreeObsForRailEnv class
Each agent recieves an observation of length 10, where each element represents a prediction step and its value
is:
- 0 if no overlap is happening
- 1 where n i the number of other paths crossing the predicted cell
:param handle: handeled as an index of an agent
:return: Observation of handle
'''
observation = np.zeros(10)
# We are going to track what cells where considered while building the obervation and make them accesible
# For rendering
visited = set()
for _idx in range(10):
# Check if any of the other prediction overlap with agents own predictions
x_coord = self.predictions[handle][_idx][1]
y_coord = self.predictions[handle][_idx][2]
# We add every observed cell to the observation rendering
visited.add((x_coord, y_coord))
if self.predicted_pos[_idx][handle] in np.delete(self.predicted_pos[_idx], handle, 0):
# We detect if another agent is predicting to pass through the same cell at the same predicted time
observation[handle] = 1
# This variable will be access by the renderer to visualize the observation
self.env.dev_obs_dict[handle] = visited
return observation
We can then use this new observation builder and the renderer to visualize the observation of each agent.
.. code-block:: python
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment