Forked from
Flatland / Flatland
1566 commits behind the upstream repository.
-
Erik Nygren authoredErik Nygren authored
flatland_2_0_example.py 4.36 KiB
import numpy as np
from flatland.envs.generators import sparse_rail_generator
from flatland.envs.observations import TreeObsForRailEnv
from flatland.envs.predictions import ShortestPathPredictorForRailEnv
from flatland.envs.rail_env import RailEnv
from flatland.utils.rendertools import RenderTool
np.random.seed(1)
# Use the complex_rail_generator to generate feasible network configurations with corresponding tasks
# Training on simple small tasks is the best way to get familiar with the environment
# Use a the malfunction generator to break agents from time to time
stochastic_data = {'prop_malfunction': 0.5,
'malfunction_rate': 30,
'min_duration': 3,
'max_duration': 10}
TreeObservation = TreeObsForRailEnv(max_depth=2, predictor=ShortestPathPredictorForRailEnv())
env = RailEnv(width=50,
height=50,
rail_generator=sparse_rail_generator(num_cities=10, # Number of cities in map
num_intersections=3, # Number of interesections in map
num_trainstations=40, # Number of possible start/targets on map
min_node_dist=10, # Minimal distance of nodes
node_radius=2, # Proximity of stations to city center
num_neighb=4, # Number of connections to other cities
seed=15, # Random seed
),
number_of_agents=10,
stochastic_data=stochastic_data, # Malfunction generator data
obs_builder_object=TreeObservation)
env_renderer = RenderTool(env, gl="PILSVG", )
# Import your own Agent or use RLlib to train agents on Flatland
# As an example we use a random agent here
class RandomAgent:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
def act(self, state):
"""
:param state: input is the observation of the agent
:return: returns an action
"""
return np.random.choice(np.arange(self.action_size))
def step(self, memories):
"""
Step function to improve agent by adjusting policy given the observations
:param memories: SARS Tuple to be
:return:
"""
return
def save(self, filename):
# Store the current policy
return
def load(self, filename):
# Load a policy
return
# Initialize the agent with the parameters corresponding to the environment and observation_builder
# Set action space to 4 to remove stop action
agent = RandomAgent(218, 4)
n_trials = 1
# Empty dictionary for all agent action
action_dict = dict()
print("Starting Training...")
for trials in range(1, n_trials + 1):
# Reset environment and get initial observations for all agents
obs = env.reset()
for idx in range(env.get_num_agents()):
tmp_agent = env.agents[idx]
speed = (idx % 4) + 1
tmp_agent.speed_data["speed"] = 1 / speed
env_renderer.reset()
# Here you can also further enhance the provided observation by means of normalization
# See training navigation example in the baseline repository
score = 0
# Run episode
frame_step = 0
for step in range(500):
# Chose an action for each agent in the environment
for a in range(env.get_num_agents()):
action = agent.act(obs[a])
action_dict.update({a: action})
# Environment step which returns the observations for all agents, their corresponding
# reward and whether their are done
next_obs, all_rewards, done, _ = env.step(action_dict)
env_renderer.render_env(show=True, show_observations=False, show_predictions=False)
env_renderer.gl.save_image("./Images/flatland_2_0_frame_{:04d}.bmp".format(frame_step))
frame_step += 1
# Update replay buffer and train agent
for a in range(env.get_num_agents()):
agent.step((obs[a], action_dict[a], all_rewards[a], next_obs[a], done[a]))
score += all_rewards[a]
obs = next_obs.copy()
if done['__all__']:
break
print('Episode Nr. {}\t Score = {}'.format(trials, score))