Forked from
Flatland / Flatland
1370 commits behind the upstream repository.
-
Erik Nygren authoredErik Nygren authored
rail_env.py 27.68 KiB
"""
Definition of the RailEnv environment.
"""
# TODO: _ this is a global method --> utils or remove later
import warnings
from enum import IntEnum
from typing import List
import msgpack
import msgpack_numpy as m
import numpy as np
from flatland.core.env import Environment
from flatland.core.grid.grid4_utils import get_new_position
from flatland.core.transition_map import GridTransitionMap
from flatland.envs.agent_utils import EnvAgentStatic, EnvAgent
from flatland.envs.observations import TreeObsForRailEnv
from flatland.envs.rail_generators import random_rail_generator, RailGenerator
from flatland.envs.schedule_generators import random_schedule_generator, ScheduleGenerator
m.patch()
class RailEnvActions(IntEnum):
DO_NOTHING = 0 # implies change of direction in a dead-end!
MOVE_LEFT = 1
MOVE_FORWARD = 2
MOVE_RIGHT = 3
STOP_MOVING = 4
@staticmethod
def to_char(a: int):
return {
0: 'B',
1: 'L',
2: 'F',
3: 'R',
4: 'S',
}[a]
class RailEnv(Environment):
"""
RailEnv environment class.
RailEnv is an environment inspired by a (simplified version of) a rail
network, in which agents (trains) have to navigate to their target
locations in the shortest time possible, while at the same time cooperating
to avoid bottlenecks.
The valid actions in the environment are:
- 0: do nothing (continue moving or stay still)
- 1: turn left at switch and move to the next cell; if the agent was not moving, movement is started
- 2: move to the next cell in front of the agent; if the agent was not moving, movement is started
- 3: turn right at switch and move to the next cell; if the agent was not moving, movement is started
- 4: stop moving
Moving forward in a dead-end cell makes the agent turn 180 degrees and step
to the cell it came from.
The actions of the agents are executed in order of their handle to prevent
deadlocks and to allow them to learn relative priorities.
Reward Function:
It costs each agent a step_penalty for every time-step taken in the environment. Independent of the movement
of the agent. Currently all other penalties such as penalty for stopping, starting and invalid actions are set to 0.
alpha = 1
beta = 1
Reward function parameters:
- invalid_action_penalty = 0
- step_penalty = -alpha
- global_reward = beta
- stop_penalty = 0 # penalty for stopping a moving agent
- start_penalty = 0 # penalty for starting a stopped agent
Stochastic malfunctioning of trains:
Trains in RailEnv can malfunction if they are halted too often (either by their own choice or because an invalid
action or cell is selected.
Every time an agent stops, an agent has a certain probability of malfunctioning. Malfunctions of trains follow a
poisson process with a certain rate. Not all trains will be affected by malfunctions during episodes to keep
complexity managable.
TODO: currently, the parameters that control the stochasticity of the environment are hard-coded in init().
For Round 2, they will be passed to the constructor as arguments, to allow for more flexibility.
"""
alpha = 1.0
beta = 1.0
# Epsilon to avoid rounding errors
epsilon = 0.01
invalid_action_penalty = 0 # previously -2; GIACOMO: we decided that invalid actions will carry no penalty
step_penalty = -1 * alpha
global_reward = 1 * beta
stop_penalty = 0 # penalty for stopping a moving agent
start_penalty = 0 # penalty for starting a stopped agent
def __init__(self,
width,
height,
rail_generator: RailGenerator = random_rail_generator(),
schedule_generator: ScheduleGenerator = random_schedule_generator(),
number_of_agents=1,
obs_builder_object=TreeObsForRailEnv(max_depth=2),
max_episode_steps=None,
stochastic_data=None
):
"""
Environment init.
Parameters
-------
rail_generator : function
The rail_generator function is a function that takes the width,
height and agents handles of a rail environment, along with the number of times
the env has been reset, and returns a GridTransitionMap object and a list of
starting positions, targets, and initial orientations for agent handle.
The rail_generator can pass a distance map in the hints or information for specific schedule_generators.
Implementations can be found in flatland/envs/rail_generators.py
schedule_generator : function
The schedule_generator function is a function that takes the grid, the number of agents and optional hints
and returns a list of starting positions, targets, initial orientations and speed for all agent handles.
Implementations can be found in flatland/envs/schedule_generators.py
width : int
The width of the rail map. Potentially in the future,
a range of widths to sample from.
height : int
The height of the rail map. Potentially in the future,
a range of heights to sample from.
number_of_agents : int
Number of agents to spawn on the map. Potentially in the future,
a range of number of agents to sample from.
obs_builder_object: ObservationBuilder object
ObservationBuilder-derived object that takes builds observation
vectors for each agent.
max_episode_steps : int or None
file_name: you can load a pickle file. from previously saved *.pkl file
"""
self.rail_generator: RailGenerator = rail_generator
self.schedule_generator: ScheduleGenerator = schedule_generator
self.rail_generator = rail_generator
self.rail: GridTransitionMap = None
self.width = width
self.height = height
self.rewards = [0] * number_of_agents
self.done = False
self.obs_builder = obs_builder_object
self.obs_builder._set_env(self)
self._max_episode_steps = max_episode_steps
self._elapsed_steps = 0
self.dones = dict.fromkeys(list(range(number_of_agents)) + ["__all__"], False)
self.obs_dict = {}
self.rewards_dict = {}
self.dev_obs_dict = {}
self.dev_pred_dict = {}
self.agents: List[EnvAgent] = [None] * number_of_agents # live agents
self.agents_static: List[EnvAgentStatic] = [None] * number_of_agents # static agent information
self.num_resets = 0
self.action_space = [1]
self.observation_space = self.obs_builder.observation_space # updated on resets?
# Stochastic train malfunctioning parameters
if stochastic_data is not None:
prop_malfunction = stochastic_data['prop_malfunction']
mean_malfunction_rate = stochastic_data['malfunction_rate']
malfunction_min_duration = stochastic_data['min_duration']
malfunction_max_duration = stochastic_data['max_duration']
else:
prop_malfunction = 0.
mean_malfunction_rate = 0.
malfunction_min_duration = 0.
malfunction_max_duration = 0.
# percentage of malfunctioning trains
self.proportion_malfunctioning_trains = prop_malfunction
# Mean malfunction in number of stops
self.mean_malfunction_rate = mean_malfunction_rate
# Uniform distribution parameters for malfunction duration
self.min_number_of_steps_broken = malfunction_min_duration
self.max_number_of_steps_broken = malfunction_max_duration
# Rest environment
self.reset()
self.num_resets = 0 # yes, set it to zero again!
self.valid_positions = None
# no more agent_handles
def get_agent_handles(self):
return range(self.get_num_agents())
def get_num_agents(self, static=True):
if static:
return len(self.agents_static)
else:
return len(self.agents)
def add_agent_static(self, agent_static):
""" Add static info for a single agent.
Returns the index of the new agent.
"""
self.agents_static.append(agent_static)
return len(self.agents_static) - 1
def restart_agents(self):
""" Reset the agents to their starting positions defined in agents_static
"""
self.agents = EnvAgent.list_from_static(self.agents_static)
def reset(self, regen_rail=True, replace_agents=True):
""" if regen_rail then regenerate the rails.
if replace_agents then regenerate the agents static.
Relies on the rail_generator returning agent_static lists (pos, dir, target)
"""
# TODO can we not put 'self.rail_generator(..)' into 'if regen_rail or self.rail is None' condition?
rail, optionals = self.rail_generator(self.width, self.height, self.get_num_agents(), self.num_resets)
if optionals and 'distance_maps' in optionals:
self.obs_builder.distance_map = optionals['distance_maps']
if regen_rail or self.rail is None:
self.rail = rail
self.height, self.width = self.rail.grid.shape
for r in range(self.height):
for c in range(self.width):
rc_pos = (r, c)
check = self.rail.cell_neighbours_valid(rc_pos, True)
if not check:
warnings.warn("Invalid grid at {} -> {}".format(rc_pos, check))
if replace_agents:
agents_hints = None
if optionals and 'agents_hints' in optionals:
agents_hints = optionals['agents_hints']
self.agents_static = EnvAgentStatic.from_lists(
*self.schedule_generator(self.rail, self.get_num_agents(), agents_hints))
self.restart_agents()
for i_agent in range(self.get_num_agents()):
agent = self.agents[i_agent]
# A proportion of agent in the environment will receive a positive malfunction rate
if np.random.random() < self.proportion_malfunctioning_trains:
agent.malfunction_data['malfunction_rate'] = self.mean_malfunction_rate
agent.malfunction_data['malfunction'] = 0
self._agent_new_malfunction(i_agent, RailEnvActions.DO_NOTHING)
self.num_resets += 1
self._elapsed_steps = 0
# TODO perhaps dones should be part of each agent.
self.dones = dict.fromkeys(list(range(self.get_num_agents())) + ["__all__"], False)
# Reset the state of the observation builder with the new environment
self.obs_builder.reset()
self.observation_space = self.obs_builder.observation_space # <-- change on reset?
# Return the new observation vectors for each agent
return self._get_observations()
def _agent_new_malfunction(self, i_agent, action) -> bool:
"""
Returns true if the agent enters into malfunction. (False, if not broken down or already broken down before).
"""
agent = self.agents[i_agent]
# Decrease counter for next event
if agent.malfunction_data['malfunction_rate'] > 0:
agent.malfunction_data['next_malfunction'] -= 1
# Only agents that have a positive rate for malfunctions and are not currently broken are considered
# If counter has come to zero --> Agent has malfunction
# set next malfunction time and duration of current malfunction
if agent.malfunction_data['malfunction_rate'] > 0 >= agent.malfunction_data['malfunction'] and \
agent.malfunction_data['next_malfunction'] <= 0:
# Increase number of malfunctions
agent.malfunction_data['nr_malfunctions'] += 1
# Next malfunction in number of stops
next_breakdown = int(
np.random.exponential(scale=agent.malfunction_data['malfunction_rate']))
agent.malfunction_data['next_malfunction'] = next_breakdown
# Duration of current malfunction
num_broken_steps = np.random.randint(self.min_number_of_steps_broken,
self.max_number_of_steps_broken + 1) + 1
agent.malfunction_data['malfunction'] = num_broken_steps
return True
return False
# TODO refactor to decrease length of this method!
def step(self, action_dict_):
self._elapsed_steps += 1
# Reset the step rewards
self.rewards_dict = dict()
for i_agent in range(self.get_num_agents()):
self.rewards_dict[i_agent] = 0
if self.dones["__all__"]:
self.rewards_dict = {i: r + self.global_reward for i, r in self.rewards_dict.items()}
info_dict = {
'action_required': {i: False for i in range(self.get_num_agents())},
'malfunction': {i: 0 for i in range(self.get_num_agents())},
'speed': {i: 0 for i in range(self.get_num_agents())}
}
return self._get_observations(), self.rewards_dict, self.dones, info_dict
for i_agent in range(self.get_num_agents()):
if self.dones[i_agent]: # this agent has already completed...
continue
agent = self.agents[i_agent]
agent.old_direction = agent.direction
agent.old_position = agent.position
# No action has been supplied for this agent -> set DO_NOTHING as default
if i_agent not in action_dict_:
action = RailEnvActions.DO_NOTHING
else:
action = action_dict_[i_agent]
if action < 0 or action > len(RailEnvActions):
print('ERROR: illegal action=', action,
'for agent with index=', i_agent,
'"DO NOTHING" will be executed instead')
action = RailEnvActions.DO_NOTHING
# Check if agent breaks at this step
new_malfunction = self._agent_new_malfunction(i_agent, action)
# Is the agent at the beginning of the cell? Then, it can take an action
# Design choice (Erik+Christian):
# as long as we're broken down at the beginning of the cell, we can choose other actions!
if agent.speed_data['position_fraction'] == 0.0:
if action == RailEnvActions.DO_NOTHING and agent.moving:
# Keep moving
action = RailEnvActions.MOVE_FORWARD
if action == RailEnvActions.STOP_MOVING and agent.moving:
# Only allow halting an agent on entering new cells.
agent.moving = False
self.rewards_dict[i_agent] += self.stop_penalty
if not agent.moving and not (
action == RailEnvActions.DO_NOTHING or action == RailEnvActions.STOP_MOVING):
# Allow agent to start with any forward or direction action
agent.moving = True
self.rewards_dict[i_agent] += self.start_penalty
# Store the action
if agent.moving and action not in [RailEnvActions.DO_NOTHING, RailEnvActions.STOP_MOVING]:
_, new_cell_valid, new_direction, new_position, transition_valid = \
self._check_action_on_agent(action, agent)
if all([new_cell_valid, transition_valid]):
agent.speed_data['transition_action_on_cellexit'] = action
else:
# But, if the chosen invalid action was LEFT/RIGHT, and the agent is moving,
# try to keep moving forward!
if (action == RailEnvActions.MOVE_LEFT or action == RailEnvActions.MOVE_RIGHT):
_, new_cell_valid, new_direction, new_position, transition_valid = \
self._check_action_on_agent(RailEnvActions.MOVE_FORWARD, agent)
if all([new_cell_valid, transition_valid]):
agent.speed_data['transition_action_on_cellexit'] = RailEnvActions.MOVE_FORWARD
else:
# If the agent cannot move due to an invalid transition, we set its state to not moving
self.rewards_dict[i_agent] += self.invalid_action_penalty
self.rewards_dict[i_agent] += self.step_penalty * agent.speed_data['speed']
self.rewards_dict[i_agent] += self.stop_penalty
agent.moving = False
else:
# If the agent cannot move due to an invalid transition, we set its state to not moving
self.rewards_dict[i_agent] += self.invalid_action_penalty
self.rewards_dict[i_agent] += self.step_penalty * agent.speed_data['speed']
self.rewards_dict[i_agent] += self.stop_penalty
agent.moving = False
# if we've just broken in this step, nothing else to do
if new_malfunction:
continue
# The train was broken before...
if agent.malfunction_data['malfunction'] > 0:
# Last step of malfunction --> Agent starts moving again after getting fixed
if agent.malfunction_data['malfunction'] < 2:
agent.malfunction_data['malfunction'] -= 1
self.agents[i_agent].moving = True
action = RailEnvActions.DO_NOTHING
else:
agent.malfunction_data['malfunction'] -= 1
# Broken agents are stopped
self.rewards_dict[i_agent] += self.step_penalty * agent.speed_data['speed']
self.agents[i_agent].moving = False
# Nothing left to do with broken agent
continue
# Now perform a movement.
# If agent.moving, increment the position_fraction by the speed of the agent
# If the new position fraction is >= 1, reset to 0, and perform the stored
# transition_action_on_cellexit if the cell is free.
if agent.moving:
agent.speed_data['position_fraction'] += agent.speed_data['speed']
if agent.speed_data['position_fraction'] >= 1.0:
# Perform stored action to transition to the next cell as soon as cell is free
# Notice that we've already check new_cell_valid and transition valid when we stored the action,
# so we only have to check cell_free now!
# cell and transition validity was checked when we stored transition_action_on_cellexit!
cell_free, new_cell_valid, new_direction, new_position, transition_valid = self._check_action_on_agent(
agent.speed_data['transition_action_on_cellexit'], agent)
if cell_free:
agent.position = new_position
agent.direction = new_direction
agent.speed_data['position_fraction'] = 0.0
if np.equal(agent.position, agent.target).all():
self.dones[i_agent] = True
agent.moving = False
else:
self.rewards_dict[i_agent] += self.step_penalty * agent.speed_data['speed']
# Check for end of episode + add global reward to all rewards!
if np.all([np.array_equal(agent2.position, agent2.target) for agent2 in self.agents]):
self.dones["__all__"] = True
self.rewards_dict = {i: 0 * r + self.global_reward for i, r in self.rewards_dict.items()}
if (self._max_episode_steps is not None) and (self._elapsed_steps >= self._max_episode_steps):
self.dones["__all__"] = True
for k in self.dones.keys():
self.dones[k] = True
action_required_agents = {
i: self.agents[i].speed_data['position_fraction'] == 0.0 for i in range(self.get_num_agents())
}
malfunction_agents = {
i: self.agents[i].malfunction_data['malfunction'] for i in range(self.get_num_agents())
}
speed_agents = {i: self.agents[i].speed_data['speed'] for i in range(self.get_num_agents())}
info_dict = {
'action_required': action_required_agents,
'malfunction': malfunction_agents,
'speed': speed_agents
}
return self._get_observations(), self.rewards_dict, self.dones, info_dict
def _check_action_on_agent(self, action, agent):
# compute number of possible transitions in the current
# cell used to check for invalid actions
new_direction, transition_valid = self.check_action(agent, action)
new_position = get_new_position(agent.position, new_direction)
# Is it a legal move?
# 1) transition allows the new_direction in the cell,
# 2) the new cell is not empty (case 0),
# 3) the cell is free, i.e., no agent is currently in that cell
new_cell_valid = (
np.array_equal( # Check the new position is still in the grid
new_position,
np.clip(new_position, [0, 0], [self.height - 1, self.width - 1]))
and # check the new position has some transitions (ie is not an empty cell)
self.rail.get_full_transitions(*new_position) > 0)
# If transition validity hasn't been checked yet.
if transition_valid is None:
transition_valid = self.rail.get_transition(
(*agent.position, agent.direction),
new_direction)
# Check the new position is not the same as any of the existing agent positions
# (including itself, for simplicity, since it is moving)
cell_free = not np.any(
np.equal(new_position, [agent2.position for agent2 in self.agents]).all(1))
return cell_free, new_cell_valid, new_direction, new_position, transition_valid
def check_action(self, agent, action):
transition_valid = None
possible_transitions = self.rail.get_transitions(*agent.position, agent.direction)
num_transitions = np.count_nonzero(possible_transitions)
new_direction = agent.direction
if action == RailEnvActions.MOVE_LEFT:
new_direction = agent.direction - 1
if num_transitions <= 1:
transition_valid = False
elif action == RailEnvActions.MOVE_RIGHT:
new_direction = agent.direction + 1
if num_transitions <= 1:
transition_valid = False
new_direction %= 4
if action == RailEnvActions.MOVE_FORWARD:
if num_transitions == 1:
# - dead-end, straight line or curved line;
# new_direction will be the only valid transition
# - take only available transition
new_direction = np.argmax(possible_transitions)
transition_valid = True
return new_direction, transition_valid
def _get_observations(self):
self.obs_dict = self.obs_builder.get_many(list(range(self.get_num_agents())))
return self.obs_dict
def get_full_state_msg(self):
grid_data = self.rail.grid.tolist()
agent_static_data = [agent.to_list() for agent in self.agents_static]
agent_data = [agent.to_list() for agent in self.agents]
msgpack.packb(grid_data, use_bin_type=True)
msgpack.packb(agent_data, use_bin_type=True)
msgpack.packb(agent_static_data, use_bin_type=True)
msg_data = {
"grid": grid_data,
"agents_static": agent_static_data,
"agents": agent_data}
return msgpack.packb(msg_data, use_bin_type=True)
def get_agent_state_msg(self):
agent_data = [agent.to_list() for agent in self.agents]
msg_data = {
"agents": agent_data}
return msgpack.packb(msg_data, use_bin_type=True)
def set_full_state_msg(self, msg_data):
data = msgpack.unpackb(msg_data, use_list=False, encoding='utf-8')
self.rail.grid = np.array(data["grid"])
# agents are always reset as not moving
self.agents_static = [EnvAgentStatic(d[0], d[1], d[2], moving=False) for d in data["agents_static"]]
self.agents = [EnvAgent(d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7], d[8]) for d in data["agents"]]
# setup with loaded data
self.height, self.width = self.rail.grid.shape
self.rail.height = self.height
self.rail.width = self.width
self.dones = dict.fromkeys(list(range(self.get_num_agents())) + ["__all__"], False)
def set_full_state_dist_msg(self, msg_data):
data = msgpack.unpackb(msg_data, use_list=False, encoding='utf-8')
self.rail.grid = np.array(data["grid"])
# agents are always reset as not moving
self.agents_static = [EnvAgentStatic(d[0], d[1], d[2], moving=False) for d in data["agents_static"]]
self.agents = [EnvAgent(d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7], d[8]) for d in data["agents"]]
if hasattr(self.obs_builder, 'distance_map') and "distance_maps" in data.keys():
self.obs_builder.distance_map = data["distance_maps"]
# setup with loaded data
self.height, self.width = self.rail.grid.shape
self.rail.height = self.height
self.rail.width = self.width
self.dones = dict.fromkeys(list(range(self.get_num_agents())) + ["__all__"], False)
def get_full_state_dist_msg(self):
grid_data = self.rail.grid.tolist()
agent_static_data = [agent.to_list() for agent in self.agents_static]
agent_data = [agent.to_list() for agent in self.agents]
msgpack.packb(grid_data, use_bin_type=True)
msgpack.packb(agent_data, use_bin_type=True)
msgpack.packb(agent_static_data, use_bin_type=True)
if hasattr(self.obs_builder, 'distance_map'):
distance_map_data = self.obs_builder.distance_map
msgpack.packb(distance_map_data, use_bin_type=True)
msg_data = {
"grid": grid_data,
"agents_static": agent_static_data,
"agents": agent_data,
"distance_maps": distance_map_data}
else:
msg_data = {
"grid": grid_data,
"agents_static": agent_static_data,
"agents": agent_data}
return msgpack.packb(msg_data, use_bin_type=True)
def save(self, filename):
if hasattr(self.obs_builder, 'distance_map'):
if len(self.obs_builder.distance_map) > 0:
with open(filename, "wb") as file_out:
file_out.write(self.get_full_state_dist_msg())
else:
with open(filename, "wb") as file_out:
file_out.write(self.get_full_state_msg())
else:
with open(filename, "wb") as file_out:
file_out.write(self.get_full_state_msg())
def load(self, filename):
if hasattr(self.obs_builder, 'distance_map'):
with open(filename, "rb") as file_in:
load_data = file_in.read()
self.set_full_state_dist_msg(load_data)
else:
with open(filename, "rb") as file_in:
load_data = file_in.read()
self.set_full_state_msg(load_data)
def load_pkl(self, pkl_data):
self.set_full_state_msg(pkl_data)
def load_resource(self, package, resource):
from importlib_resources import read_binary
load_data = read_binary(package, resource)
self.set_full_state_msg(load_data)