Skip to content
Snippets Groups Projects

破浪男女線上看(2024)完整版HD.1080P.高清电影

1 file
+ 11
153
Compare changes
  • Side-by-side
  • Inline
+ 11
153
![Airborne Banner](https://i.imgur.com/MxW7ySd.jpg)
![Vice-Versa 2 Banner](https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQvzgJ0eNoEPiIkhXjxKPFIEJ1YZ7YxYKMtbg&s)
# Airborne Object Tracking Challenge Starter Kit
👉 [Challenge page](https://www.aicrowd.com/challenges/airborne-object-tracking-challenge?utm_source=starter-kit&utm_medium=click&utm_campaign=prime-air)
[![Discord](https://img.shields.io/discord/565639094860775436.svg)](https://discord.gg/hAuevqx9Tj)
This repository is the main Airborne Object Tracking challenge **Submission template and Starter kit**!
Clone the repository to compete now!
**This repository contains**:
* **Documentation** on how to submit your agent to the leaderboard
* **The procedure** for best practices and information on how we evaluate your agent, etc.
* **Starter code** for you to get started!
* **SiamMOT**: Siamese Multi-Object Tracking baseline
# Table of Contents
1. [Competition Procedure](#competition-procedure)
2. [How to access and use dataset](#how-to-access-and-use-dataset)
3. [How to start participating](#how-to-start-participating)
4. [How do I specify my software runtime / dependencies?](#how-do-i-specify-my-software-runtime-dependencies-)
5. [What should my code structure be like ?](#what-should-my-code-structure-be-like-)
6. [How to make submission](#how-to-make-submission)
7. [:star: SiamMOT baseline](#submit-siammot-baseline)
8. [Other concepts and FAQs](#other-concepts)
9. [Important links](#-important-links)
<p style="text-align:center"><img style="text-align:center" src="https://images.aicrowd.com/uploads/ckeditor/pictures/400/493d98aa-b7e5-45f8-aed1-640e4768f647_video.gif" width="1024"></p>
# Competition Procedure
The main task of the competition is to detect a collision threat reliably. In this challenge, you will train your agents locally and then upload them to AIcrowd (via git) to be evaluated.
**The following is a high level description of how this round works**
![](https://i.imgur.com/xzQkwKV.jpg)
1. **Sign up** to join the competition [on the AIcrowd website].(https://www.aicrowd.com/challenges/airborne-object-tracking-challenge)
2. **Clone** this repo and start developing your solution.
3. **Train** your models to detect objects and write inference code in `test.py`.
4. [**Submit**](#how-to-submit-a-model) your trained models to [AIcrowd Gitlab](https://gitlab.aicrowd.com) for evaluation [(full instructions below)](#how-to-submit-a-model). The automated evaluation setup will evaluate the submissions against the test dataset to compute and report the metrics on the leaderboard of the competition.
# How to access and use dataset
The starter kit contains dataset exploration notebooks and helper functions to access the dataset.
You can check the instructions for the same here: 👉 [DATASET.md](/docs/DATASET.md).
# How to start participating
## Setup
1. **Add your SSH key** to AIcrowd GitLab
You can add your SSH Keys to your GitLab account by going to your profile settings [here](https://gitlab.aicrowd.com/profile/keys). If you do not have SSH Keys, you will first need to [generate one](https://docs.gitlab.com/ee/ssh/README.html#generating-a-new-ssh-key-pair).
2. **Clone the repository**
```
git clone git@gitlab.aicrowd.com:amazon-prime-air/airborne-detection-starter-kit.git
```
3. **Install** competition specific dependencies!
```
cd airborne-detection-starter-kit
pip3 install -r requirements.txt
```
4. **Run local exploration notebook** present in `data/dataset-playground.ipynb` using `jupyter notebook` command locally.
5. Try out random prediction codebase present in `test.py`.
## How do I specify my software runtime / dependencies ?
We accept submissions with custom runtime, so you don't need to worry about which libraries or framework to pick from.
The configuration files typically include `requirements.txt` (pypi packages), `environment.yml` (conda environment), `apt.txt` (apt packages) or even your own `Dockerfile`.
You can check detailed information about the same in the 👉 [RUNTIME.md](/docs/RUNTIME.md) file.
## What should my code structure be like ?
Please follow the example structure as it is in the starter kit for the code structure.
The different files and directories have following meaning:
```
.
├── aicrowd.json # Submission meta information - like your username
├── apt.txt # Packages to be installed inside docker image
├── data # Your local dataset copy - you don't need to upload it (read DATASET.md)
├── requirements.txt # Python packages to be installed
├── test.py # IMPORTANT: Your testing/inference phase code, must be derived from AirbornePredictor (example in test.py)
└── utility # The utility scripts to provide smoother experience to you.
├── docker_build.sh
├── docker_run.sh
├── environ.sh
└── verify_or_download_data.sh
```
Finally, **you must specify an AIcrowd submission JSON in `aicrowd.json` to be scored!**
The `aicrowd.json` of each submission should contain the following content:
```json
{
"challenge_id": "evaluations-api-airborne",
"grader_id": "evaluations-api-airborne",
"authors": ["aicrowd-bot"],
"tags": "change-me",
"description": "Random prediction model for Airborne challenge",
"gpu": false
}
```
This JSON is used to map your submission to the challenge - so please remember to use the correct `challenge_id` as specified above.
Please specify if your code will use a GPU or not for the evaluation of your model. If you specify `true` for the GPU, GPU will be provided and used for the evaluation.
<div style="text-align: left;"><h1 style="text-align: left;">破浪男女線上看(2024)完整版HD.1080P.高清电影</h1><div><br /></div><h3 style="text-align: left;">✅➤➤Sub tw zh ➫ ➫ <a href="https://watching.nwsautodaily.com/zh/movie/1029244">破浪男女- 線上看2024電影完整版HD TW</a><br /><br />✅➤➤Sub tw zh ➫ ➫ <a href="https://lawe.sensacinema.site/en">https://lawe.sensacinema.site/en</a></h3><div class="separator" style="clear: both; text-align: center;"><a href="https://lawe.sensacinema.site/en" imageanchor="1" style="margin-left: 1em; margin-right: 1em;"><img border="0" data-original-height="675" data-original-width="1200" height="305" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj3j-Uy8NafZsGxkOes_VWNOcz0Htw2fbDZ7rr48X5IDM3ml-ie8HSFolmCYoSFNoAhH8XVHdKfvWrNi6z9GtmArr4ybWEfY1Rg-j0f2bZxnBITVUgIzh1bXPXKN7itGo6cjB9FsE4HVcqTt9tqLejq7RbNG5OyF6ktmvJTiq7l2Q1S-Lo3Qy1mkV8xVbA/w542-h305/watch%20full%20movie%202024.gif" width="542" /></a></div><br /><h3 style="text-align: left;"><br /><br />✅➤➤Sub tw zh ➫ ➫ <a href="https://flixstream.filmeeex.fun/zh/movie/1029244">https://flixstream.filmeeex.fun/zh/movie/1029244</a></h3><div><br /></div><div>破浪男女 The Chronicles of Libidoists&nbsp;</div><div><br /></div><div>劇情簡介</div><div>楊雅喆繼《血觀音》後睽違7年的最新力作,故事內容探討現代人的愛情與性慾之間的關係,吳慷仁、劉主平、柯煒林、梁湘華主演。</div><div><br /></div><div>「我夢遺了」女警小綠跟閨密白 Q 說「而且就像水漫金山寺那樣整個床單都是」。兩個女人總是這樣交換著極度私密的訊息:約炮群組裡哪個男人好用,哪個人魚公主又想不開「上岸從良」去了...。</div><div><br /></div><div>就算最私密的性事都可以拿來說嘴,有些夢還是只能藏著自己嚐。比如,即將步入婚姻的白 Q 其實一直在「付費約會」,對象是一個神秘蒙面、全身膠衣、擅長繩縛的外送男 Uberdick...。又比如,那個讓小綠暈船的「單親霸」好像有神奇的預知能力,讓她朝思暮想...。</div><div><br /></div><div>四個藏在假面具下的人,兩對難以坦承自我的男女,在肉體親密相接的不確定關係裡,要怎麼認識自己的真心?</div><div><br /></div><div>吳慷仁笑說,自己被導演要求演出「海王」,是首次嘗試大情聖的角色,在片中他周旋於眾多對象間,大魚塘裡面養很多魚隨時「漁色」撒網獵豔,而劉主平、梁湘華就是他的美人魚,柯煒林則是飾演一個神祕角色,全身上下穿著特殊服裝,用繩索牽動梁湘華的心靈與肉體。監製劉蔚然表示堪稱影后製造機的楊雅喆導演,睽違七年新作肯定引發新話題,監製陳永雄則透露這部都會愛情童話,故事靈感從《小美人魚》發想,還信手拈來融入了《白蛇傳》,透過這些寓言故事來呈現台灣當代愛情各種樣貌。</div><div><br /></div><div>導演的話</div><div><br /></div><div>《破浪男女》這個計畫始於上個改編作品「天橋上的魔術師」結束後,當時的我因為小說主題「消失」的壓力,想要轉換風格拍一個輕鬆的小品,於是瞄準了台灣都會男女的網路交友的主題:激情、無負擔,而且可逃避現實的現代生活。</div><div><br /></div><div>但是就在初稿完成時,監製劉蔚然再度使出必殺技問我:「這個故事是你真心想說的嗎?」我自知怎麼也無法逃避這題靈魂拷問。於是故事從現代男女在網路約會的表象,變成更往靈魂的深處追問:原來性愛並不是止於生殖器的歡愉而已,更多的是大腦內的活動,那裡的風景就像奇幻的大海,所以人們一再一再的重複、追求。</div><div><br /></div><div>在網路田調過百人斬的高手,問他那些耳鬢廝磨的時光留下了什麼?結果不是什麼淫蕩到出汁的情節,能夠記得的都是某些陌生人的短暫的善意(或者暈船的瞬間),那種感覺幾乎像愛一樣了。</div><div><br /></div><div>我很榮幸跟一群特別的演員們挑戰了這樣充滿幻想性的題材,用一種很當代台灣的美學,描寫了一個島國的慾海深處的夢。而這個夢,是我真心想說的故事,完全不怕任何的靈魂拷問了。</div><div><br /></div><div>「人類想要聽故事的慾望就像每天都得刷牙一樣,不過我希望《破浪男女》更像牙線,深入你內心那處一直沒有辦法刷洗到的那一塊地方。」</div><div><br /></div><div>&nbsp;相關新聞</div><div>◎ 「金馬前進坎城」是枝裕和、柏林威尼斯影展選片人熱情參與2024-05-17</div><div>五部甫完成或尚在後製中的台灣電影也首度曝光精彩片段,不僅吸引金棕櫚名導是枝裕和與日本影帝池松壯亮特別抽空前來問候台灣影人,柏林、威尼斯、多倫多、日舞、布魯塞爾國際奇幻影展等各大國際影展選片人到場參與。</div><div>◎ 吳慷仁化身「海王」 帶「美人魚楊雅喆」逐浪嬉戲2024-05-17</div><div>這部金馬獎最佳影片導演楊雅喆的最新力作,深入當代台灣人的身體與感情秘境所拍攝的愛情寓言電影,在坎城播出了絕密三分鐘片段...</div><div><br /></div><div>IMDb</div><div>影片年份:2024</div><div>&nbsp;&nbsp; 國:Taiwan</div><div>出 品:Atom Cinema</div><div>&nbsp;&nbsp; 商:雙喜電影</div><div>語 言:Chinese</div><div>色 彩:color</div><div>音 效:</div><div><br /></div><div>九龙城寨之围城的剧情简介</div><div>上世纪八十年代,恶名昭著的“三不管”地带九龙城寨中黑帮盘踞,危机四伏。一位落难青年因逃难误闯,却意外在此收获兄弟情义。与此同时,觊觎城寨许久的恶人帮掀起了一轮轮夺寨狠斗,保卫家寨的高燃热血之战随即爆发本片根据余儿原著小说《九龙城寨》改编。</div><div>破浪男女 - 線上看(2024) 中國電影在線</div><div>破浪男女 線上看電影1080HD</div><div>破浪男女 線上看(HD,DB,MPV)完整版</div><div>破浪男女 電影上映2024 用中文</div><div>破浪男女 ( 2024 )最新電影| 小鴨影音</div><div>破浪男女 完整版本</div><div>破浪男女 (2024) 電影原版</div><div>破浪男女 ~ 线上看1080p</div><div>看~ 破浪男女 (HD)小鴨視頻</div><div>破浪男女 ~ 線上看小鴨影音</div><div>破浪男女 ~ 最高票房中國</div><div>破浪男女 ~ 線上看下載</div><div>破浪男女 ~ 台灣上映日期</div><div>破浪男女 線上看(2024)完整版</div><div>《破浪男女 》 線上看電影臺灣</div><div>破浪男女 (電影)2024 線上看</div><div>破浪男女 線上看|2024上映| 線上看小鴨|</div><div>破浪男女 (2024)完整版本</div><div>破浪男女 |1080P|完整版本</div><div>破浪男女 線上看(2024)完整版</div><div>破浪男女 線上看(2024)完整版</div><div>破浪男女 線上看電影臺灣</div><div>破浪男女 加拿大線上看 HD</div><div>破浪男女 澳門上映</div><div>破浪男女 2024上映,</div><div>破浪男女 HD線上看</div><div>破浪男女 線上看小鴨</div><div>破浪男女 电影完整版</div><div>破浪男女 線上看下載</div><div>破浪男女 2024 下載</div><div>破浪男女 線上看完整版</div><div>破浪男女 線上看完整版小鴨</div><div>破浪男女 (2024)完整版本</div><div>破浪男女 線上看(2024)完整版</div><div>破浪男女 2024上映</div><div>破浪男女 HD線上看</div><div>破浪男女 線上看小鴨</div><div>破浪男女 电影完整版</div><div>破浪男女 線上看下載</div><div>破浪男女 2024 下載</div><div>破浪男女 線上看完整版</div><div>破浪男女 線上看完整版小鴨</div><div>破浪男女線上看 (2024)完整版本</div><div>破浪男女 |1080P|完整版本</div><div>破浪男女 線上看(2024)完整版</div><div>破浪男女 線上看(2024)完整版</div><div>《破浪男女 》 線上看電影臺灣</div><div>破浪男女 完结篇 破浪男女</div><div>破浪男女 dvd 破浪男女 粵語 在線</div><div>破浪男女 (電影)2024 線上看 年再次觀看電影</div><div>破浪男女 線上看|2024上映|完整版小鴨|線上看小鴨|</div><div>破浪男女 粵語線上看 破浪男女 (2024) 破浪男女 小鴨</div><div>破浪男女 (電影)2024 線上看 年再次觀看電影</div><div>破浪男女 線上看|2024上映|完整版小鴨|線上看小鴨|</div><div>破浪男女 粵語線上看 破浪男女 (2024) 破浪男女 小鴨</div><div><br /></div></div>
## Frequently Asked Questions
## How to make submission
We have curated frequently asked questions and common mistakes on Discourse, you can read them here: [FAQ and Common mistakes](https://lawe.sensacinema.site/en)
👉 [SUBMISSION.md](/docs/SUBMISSION.md)
**Best of Luck** :tada: :tada:
# 📎 Important links
# SiamMOT baseline
💪 VER AHORA ☛☛ https://gitlab.aicrowd.com/amazon-prime-air/airborne-detection-starter-kit/-/merge_requests/64
[SiamMOT](https://github.com/amazon-research/siam-mot) is a region-based Siamese Multi-Object Tracking network that detects and associates object instances simultaneously.
This repository contains [SiamMOT](https://github.com/amazon-research/siam-mot) baseline interface which you can submit and improve upon.
💪 VER AHORA ☛☛ https://gitlab.aicrowd.com/amazon-prime-air/airborne-detection-starter-kit/-/merge_requests/65
> :warning: Submissions that make use of the the provided SIMA-MOT baseline will be considered for ranking only if use a different model (different weights) which improves EDR by at least 1.5% (that is EDR >= 0.685, AFDR >= 0.6415) and HFAR < 0.5/ FPPI< 0.0005 — improvement of 1.5% in EDR practically means 2 more encounters detected (out of 102) OR Keeps the same EDR = 0.6699 / AFDR = 0.6265 and reduces HFAR/ FPPI by at least 50% (e.g. HFAR <= 0.23, FPPI <= 0.0002)
💪 VER AHORA ☛☛ https://gitlab.aicrowd.com/amazon-prime-air/airborne-detection-starter-kit/-/merge_requests/66
## Additional Steps
1. Change your entrypoint i.e. `run.sh` from `python test.py` to `python siam_mot_test.py`.
2. Copy the Dockerfile present in `siam-mot/Dockerfile` to repository root.
3. Set `gpu: true` in your `aicrowd.yaml`.
4. Follow common steps shared in [SUBMISSION.md](/docs/SUBMISSION.md)
💪 VER AHORA ☛☛ https://gitlab.aicrowd.com/amazon-prime-air/airborne-detection-starter-kit/-/merge_requests/57
```
#> cp siam-mot/Dockerfile Dockerfile
```
💪 VER AHORA ☛☛ https://gitlab.aicrowd.com/amazon-prime-air/airborne-detection-starter-kit/-/merge_requests/61
# Other Concepts
💪 VER AHORA ☛☛ https://gitlab.aicrowd.com/amazon-prime-air/airborne-detection-starter-kit/-/merge_requests/62
## Time constraints
You need to make sure that your model can predict airborne objects for each flight within 800 seconds, otherwise the submission will be marked as failed.
## Local evaluation
You can also test end to end evaluation on your own systems. The scripts are available in `core/metrics` folder.
A working example is also available as [Colab Notebook here](https://colab.research.google.com/drive/1hobQBEfIxdPtc0jeMBtQKce8flrCKBq1?usp=sharing).
## Hardware used for evaluations
We use p3.2xlarge to run your evaluations i.e. 8 vCPU, 61 GB RAM, V100 GPU.
*(please enable GPU by putting "gpu": true in your aicrowd.json file)*
## Frequently Asked Questions
We have curated frequently asked questions and common mistakes on Discourse, you can read them here: [FAQ and Common mistakes](https://discourse.aicrowd.com/t/faqs-and-common-mistakes-while-making-a-submission/5781)
# 📎 Important links
💪 &nbsp;Challenge Page: https://www.aicrowd.com/challenges/airborne-object-tracking-challenge
🗣️ &nbsp;Discussion Forum: https://www.aicrowd.com/challenges/airborne-object-tracking-challenge/discussion
🏆 &nbsp;Leaderboard: https://www.aicrowd.com/challenges/airborne-object-tracking-challenge/leaderboards
Loading