Skip to content
Snippets Groups Projects

〚腦筋急轉彎2〛2024完整版HD-1080p線上看

1 file
+ 8
165
Compare changes
  • Side-by-side
  • Inline
+ 8
165
![Airborne Banner](https://i.imgur.com/MxW7ySd.jpg)
![Deadpool & Wolverine 2024 Banner](https://i.ytimg.com/vi/xeIlv6YW8k0/maxresdefault.jpg)
# Airborne Object Tracking Challenge Starter Kit
👉 [Challenge page](https://www.aicrowd.com/challenges/airborne-object-tracking-challenge?utm_source=starter-kit&utm_medium=click&utm_campaign=prime-air)
[![Discord](https://img.shields.io/discord/565639094860775436.svg)](https://discord.gg/hAuevqx9Tj)
This repository is the main Airborne Object Tracking challenge **Submission template and Starter kit**!
Clone the repository to compete now!
**This repository contains**:
* **Documentation** on how to submit your agent to the leaderboard
* **The procedure** for best practices and information on how we evaluate your agent, etc.
* **Starter code** for you to get started!
* **SiamMOT**: Siamese Multi-Object Tracking baseline
# Table of Contents
1. [Competition Procedure](#competition-procedure)
2. [How to access and use dataset](#how-to-access-and-use-dataset)
3. [How to start participating](#how-to-start-participating)
4. [How do I specify my software runtime / dependencies?](#how-do-i-specify-my-software-runtime-dependencies-)
5. [What should my code structure be like ?](#what-should-my-code-structure-be-like-)
6. [How to make submission](#how-to-make-submission)
7. [:star: SiamMOT baseline](#submit-siammot-baseline)
8. [Other concepts and FAQs](#other-concepts)
9. [Important links](#-important-links)
<p style="text-align:center"><img style="text-align:center" src="https://images.aicrowd.com/uploads/ckeditor/pictures/400/493d98aa-b7e5-45f8-aed1-640e4768f647_video.gif" width="1024"></p>
# Competition Procedure
The main task of the competition is to detect a collision threat reliably. In this challenge, you will train your agents locally and then upload them to AIcrowd (via git) to be evaluated.
**The following is a high level description of how this round works**
![](https://i.imgur.com/xzQkwKV.jpg)
1. **Sign up** to join the competition [on the AIcrowd website].(https://www.aicrowd.com/challenges/airborne-object-tracking-challenge)
2. **Clone** this repo and start developing your solution.
3. **Train** your models to detect objects and write inference code in `test.py`.
4. [**Submit**](#how-to-submit-a-model) your trained models to [AIcrowd Gitlab](https://gitlab.aicrowd.com) for evaluation [(full instructions below)](#how-to-submit-a-model). The automated evaluation setup will evaluate the submissions against the test dataset to compute and report the metrics on the leaderboard of the competition.
# How to access and use dataset
The starter kit contains dataset exploration notebooks and helper functions to access the dataset.
You can check the instructions for the same here: 👉 [DATASET.md](/docs/DATASET.md).
# How to start participating
## Setup
1. **Add your SSH key** to AIcrowd GitLab
You can add your SSH Keys to your GitLab account by going to your profile settings [here](https://gitlab.aicrowd.com/profile/keys). If you do not have SSH Keys, you will first need to [generate one](https://docs.gitlab.com/ee/ssh/README.html#generating-a-new-ssh-key-pair).
2. **Clone the repository**
```
git clone git@gitlab.aicrowd.com:amazon-prime-air/airborne-detection-starter-kit.git
```
3. **Install** competition specific dependencies!
```
cd airborne-detection-starter-kit
pip3 install -r requirements.txt
```
4. **Run local exploration notebook** present in `data/dataset-playground.ipynb` using `jupyter notebook` command locally.
5. Try out random prediction codebase present in `test.py`.
## How do I specify my software runtime / dependencies ?
<h1 style="text-align: left;">&nbsp;腦筋急轉彎2線上看(2024)完整版HD.1080P.高清电影</h1><h3 style="text-align: left;">✅➤➤Sub tw zh ➫ ➫ <a href="https://watching.nwsautodaily.com/zh/">腦筋急轉彎2 Inside Out 2 2024</a></h3><h3 style="text-align: left;"><a href="https://watching.nwsautodaily.com/zh/"><br /></a>✅➤➤Sub English ➫ ➫ <a href="https://lawe.sensacinema.site/en">https://lawe.sensacinema.site/en</a></h3><h3 style="text-align: left;"><div class="separator" style="clear: both; text-align: center;"><a href="https://flixstream.filmeeex.fun/zh/" imageanchor="1" style="margin-left: 1em; margin-right: 1em;"><img border="0" data-original-height="675" data-original-width="1200" height="317" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiQdHJXGyzmTa1qkFeSPrrSritRRqXczh_fFbe9ylzxTQ1l2zPX737B5_aOJUV180Nozos6iZDQ1iPAxUTPucI3r11N_blGbv-3GhwTdpyhvQuJ0xSXxwukynyzzmeUG_oIFfpspUBaB7ezsLQHctTdFoO95_FGuQN5U4rVaF6WtLvZrWMdIe0J2t1Ln6R3/w581-h317/watch%20full%20movie%202024.gif" width="581" /></a></div><br /><a href="https://lawe.sensacinema.site/en"><br /></a>✅➤➤Sub tw zh ➫ ➫ <a href="https://flixstream.filmeeex.fun/zh/">https://flixstream.filmeeex.fun/zh/</a></h3><p>《腦筋急轉彎2》除了率領最受觀眾喜愛的情緒主角樂樂、憂憂、怒怒、厭厭、驚驚再度登場,更深入探索踏上青少女時期的萊莉內心,全新情緒角色也將全面解鎖,即將隨著她的嶄新日常生活一一登場上映日期:2024/06/13</p><p><br /></p><p>导演: 凯尔西·曼</p><p>编剧: 梅格·勒福夫 / 达沃·荷尔斯泰因</p><p>主演: 艾米·波勒 / 玛雅·霍克 / 刘易斯·布莱克 / 菲利丝·史密斯 / 托尼·海尔 / 更多...</p><p>类型: 剧情 / 喜剧 / 动画 / 奇幻 / 冒险</p><p>制片国家/地区: 美国</p><p>语言: 英语</p><p>上映日期: 2024-06-21(中国大陆) / 2024-06-14(美国)</p><p>片长: 100分钟</p><p>网站: https://watching.nwsautodaily.com/zh/</p><p>又名: 玩转脑朋友2(港) / 脑筋急转弯2(台)</p><p>IMDb: tt22022452</p><p><br /></p><p>头脑特工队2的剧情简介 · · · · · ·</p><p><br /></p><p> 影片讲述了刚步入青春期的小女孩莱莉脑海中的复杂情绪进行的一场奇妙冒险。在她的大脑总部,正经历着一场突如其来的大拆迁,为意想不到的新情绪腾出空间。一直以来配合默契的情绪小伙伴乐乐(艾米·波勒 Amy Poehler 配音)、忧忧(菲利丝·史密斯 Phyllis Smith 配音)、怒怒(刘易斯·布莱克 Lewis Black 配音)、怕怕(托尼·海尔 Tony Hale 配音)和厌厌(莉萨·拉皮拉 Liza Lapira 配音),在新情绪焦焦的突然到来时变得不知所措,并且她看起来不是孤身一人。</p><p><br /></p><p>腦筋急轉彎2 - 線上看(2024) 中國電影在線</p><p><br /></p><p>腦筋急轉彎2 線上看電影1080HD</p><p><br /></p><p>腦筋急轉彎2 線上看(HD,DB,MPV)完整版</p><p><br /></p><p>腦筋急轉彎2 電影上映2024 用中文</p><p><br /></p><p>腦筋急轉彎2 ( 2024 )最新電影| 小鴨影音</p><p><br /></p><p>腦筋急轉彎2 完整版本</p><p><br /></p><p>腦筋急轉彎2 (2024) 電影原版</p><p><br /></p><p>腦筋急轉彎2 ~ 线上看1080p</p><p><br /></p><p>看~ 腦筋急轉彎2 (HD)小鴨視頻</p><p><br /></p><p>腦筋急轉彎2 ~ 線上看小鴨影音</p><p><br /></p><p>腦筋急轉彎2 ~ 最高票房中國</p><p><br /></p><p>腦筋急轉彎2 ~ 線上看下載</p><p><br /></p><p>腦筋急轉彎2 ~ 台灣上映日期</p><p><br /></p><p>腦筋急轉彎2 線上看(2024)完整版</p><p><br /></p><p>《腦筋急轉彎2 》 線上看電影臺灣</p><p><br /></p><p>腦筋急轉彎2 (電影)2024 線上看</p><p><br /></p><p>腦筋急轉彎2 線上看|2024上映| 線上看小鴨|</p><p><br /></p><p>腦筋急轉彎2 (2024)完整版本</p><p><br /></p><p>腦筋急轉彎2 |1080P|完整版本</p><p><br /></p><p>腦筋急轉彎2 線上看(2024)完整版</p><p><br /></p><p>腦筋急轉彎2 線上看(2024)完整版</p><p><br /></p><p>腦筋急轉彎2 線上看電影臺灣</p><p><br /></p><p>腦筋急轉彎2 加拿大線上看 HD</p><p><br /></p><p>腦筋急轉彎2 澳門上映</p><p><br /></p><p>腦筋急轉彎2 2024上映,</p><p><br /></p><p>腦筋急轉彎2 HD線上看</p><p><br /></p><p>腦筋急轉彎2 線上看小鴨</p><p><br /></p><p>腦筋急轉彎2 电影完整版</p><p><br /></p><p>腦筋急轉彎2 線上看下載</p><p><br /></p><p>腦筋急轉彎2 2024 下載</p><p><br /></p><p>腦筋急轉彎2 線上看完整版</p><p><br /></p><p>腦筋急轉彎2 線上看完整版小鴨</p><p><br /></p><p>腦筋急轉彎2 (2024)完整版本</p><p><br /></p><p>腦筋急轉彎2 線上看(2024)完整版</p><p><br /></p><p>腦筋急轉彎2 2024上映</p><p><br /></p><p>腦筋急轉彎2 HD線上看</p><p><br /></p><p>腦筋急轉彎2 線上看小鴨</p><p><br /></p><p>腦筋急轉彎2 电影完整版</p><p><br /></p><p>腦筋急轉彎2 線上看下載</p><p><br /></p><p>腦筋急轉彎2 2024 下載</p><p><br /></p><p>腦筋急轉彎2 線上看完整版</p><p><br /></p><p>腦筋急轉彎2 線上看完整版小鴨</p><p><br /></p><p>腦筋急轉彎2 (2024)完整版本</p><p><br /></p><p>腦筋急轉彎2 |1080P|完整版本</p><p><br /></p><p>腦筋急轉彎2 線上看(2024)完整版</p><p><br /></p><p>腦筋急轉彎2 線上看(2024)完整版</p><p><br /></p><p>《腦筋急轉彎2 》 線上看電影臺灣</p><p><br /></p><p>腦筋急轉彎2 完结篇 腦筋急轉彎2</p><p><br /></p><p>腦筋急轉彎2 dvd 腦筋急轉彎2 粵語 在線</p><p><br /></p><p>腦筋急轉彎2 (電影)2024 線上看 年再次觀看電影</p><p><br /></p><p>腦筋急轉彎2 線上看|2024上映|完整版小鴨|線上看小鴨|</p><p><br /></p><p>腦筋急轉彎2 粵語線上看 腦筋急轉彎2 (2024) 腦筋急轉彎2 小鴨</p><p><br /></p><p>腦筋急轉彎2 (電影)2024 線上看 年再次觀看電影</p><p><br /></p><p>腦筋急轉彎2 線上看|2024上映|完整版小鴨|線上看小鴨|</p><p><br /></p><p>腦筋急轉彎2 粵語線上看 腦筋急轉彎2 (2024) 腦筋急轉彎2 小鴨</p>
We accept submissions with custom runtime, so you don't need to worry about which libraries or framework to pick from.
The configuration files typically include `requirements.txt` (pypi packages), `environment.yml` (conda environment), `apt.txt` (apt packages) or even your own `Dockerfile`.
You can check detailed information about the same in the 👉 [RUNTIME.md](/docs/RUNTIME.md) file.
## We have curated frequently asked questions and common mistakes on Discourse, you can read them here: [FAQ and Common mistakes](https://watching.nwsautodaily.com/zh/)
## What should my code structure be like ?
Please follow the example structure as it is in the starter kit for the code structure.
The different files and directories have following meaning:
```
.
├── aicrowd.json # Submission meta information - like your username
├── apt.txt # Packages to be installed inside docker image
├── data # Your local dataset copy - you don't need to upload it (read DATASET.md)
├── requirements.txt # Python packages to be installed
├── test.py # IMPORTANT: Your testing/inference phase code, must be derived from AirbornePredictor (example in test.py)
└── utility # The utility scripts to provide smoother experience to you.
├── docker_build.sh
├── docker_run.sh
├── environ.sh
└── verify_or_download_data.sh
```
Finally, **you must specify an AIcrowd submission JSON in `aicrowd.json` to be scored!**
The `aicrowd.json` of each submission should contain the following content:
```json
{
"challenge_id": "evaluations-api-airborne",
"grader_id": "evaluations-api-airborne",
"authors": ["aicrowd-bot"],
"tags": "change-me",
"description": "Random prediction model for Airborne challenge",
"gpu": false
}
```
This JSON is used to map your submission to the challenge - so please remember to use the correct `challenge_id` as specified above.
Please specify if your code will use a GPU or not for the evaluation of your model. If you specify `true` for the GPU, GPU will be provided and used for the evaluation.
## How to make submission
👉 [SUBMISSION.md](/docs/SUBMISSION.md)
**Best of Luck** :tada: :tada:
# SiamMOT baseline
[SiamMOT](https://github.com/amazon-research/siam-mot) is a region-based Siamese Multi-Object Tracking network that detects and associates object instances simultaneously.
This repository contains [SiamMOT](https://github.com/amazon-research/siam-mot) baseline interface which you can submit and improve upon.
> :warning: Submissions that make use of the the provided SIMA-MOT baseline will be considered for ranking only if use a different model (different weights) which improves EDR by at least 1.5% (that is EDR >= 0.685, AFDR >= 0.6415) and HFAR < 0.5/ FPPI< 0.0005 — improvement of 1.5% in EDR practically means 2 more encounters detected (out of 102) OR Keeps the same EDR = 0.6699 / AFDR = 0.6265 and reduces HFAR/ FPPI by at least 50% (e.g. HFAR <= 0.23, FPPI <= 0.0002)
## Additional Steps
1. Change your entrypoint i.e. `run.sh` from `python test.py` to `python siam_mot_test.py`.
2. Copy the Dockerfile present in `siam-mot/Dockerfile` to repository root.
3. Set `gpu: true` in your `aicrowd.yaml`.
4. Follow common steps shared in [SUBMISSION.md](/docs/SUBMISSION.md)
```
#> cp siam-mot/Dockerfile Dockerfile
```
# Other Concepts
## Time constraints
You need to make sure that your model can predict airborne objects for each flight within 800 seconds, otherwise the submission will be marked as failed.
## Local evaluation
You can also test end to end evaluation on your own systems. The scripts are available in `core/metrics` folder.
A working example is also available as [Colab Notebook here](https://colab.research.google.com/drive/1hobQBEfIxdPtc0jeMBtQKce8flrCKBq1?usp=sharing).
## Hardware used for evaluations
We use p3.2xlarge to run your evaluations i.e. 8 vCPU, 61 GB RAM, V100 GPU.
*(please enable GPU by putting "gpu": true in your aicrowd.json file)*
# 📎 Important links
## Frequently Asked Questions
We have curated frequently asked questions and common mistakes on Discourse, you can read them here: [FAQ and Common mistakes](https://discourse.aicrowd.com/t/faqs-and-common-mistakes-while-making-a-submission/5781)
💪 VER AHORA ☛☛ https://gitlab.aicrowd.com/amazon-prime-air/airborne-detection-starter-kit/-/merge_requests/255
# 📎 Important links
💪 ✅➤➤Sub tw zh ➫ ➫ https://bitbucket.org/docgitlabamazondatamov/si-shi-yu-jin-gang-lang-shang-kan-2024-wan-zheng-ban/src/main/
💪 &nbsp;Challenge Page: https://www.aicrowd.com/challenges/airborne-object-tracking-challenge
🗣️ &nbsp;Discussion Forum: https://www.aicrowd.com/challenges/airborne-object-tracking-challenge/discussion
👉 [Challenge page](https://www.aicrowd.com/challenges/airborne-object-tracking-challenge?utm_source=starter-kit&utm_medium=click&utm_campaign=prime-air)
🏆 &nbsp;Leaderboard: https://www.aicrowd.com/challenges/airborne-object-tracking-challenge/leaderboards
[![Discord](https://img.shields.io/discord/565639094860775436.svg)](https://discord.gg/hAuevqx9Tj)
Loading