Skip to content
Snippets Groups Projects

〚我们永远是我们〛2024完整版HD-1080p線上看TAIWAN

1 file
+ 10
278
Compare changes
  • Side-by-side
  • Inline
+ 10
278
![We Are Forever 2024 Banner](https://lh3.googleusercontent.com/proxy/JLrYTCxh2DE14OwcaMJvsPU7bbGUbw-d-ZGj8-VNaPIZWhzI63LYOGal-Trdje6emlr4bz2DZI6zL1HQLVRMyIoLcmiCakXr6WVZzM8f-SpXjm3MI1dSWS_0c9gXAfmDhgv-oI3gRaE)
# R Interface to Python
<!-- badges: start -->
[![R-CMD-check](https://github.com/rstudio/reticulate/workflows/R-CMD-check/badge.svg)](https://github.com/rstudio/reticulate/actions)
<!-- badges: end -->
The **reticulate** package provides a comprehensive set of tools for
interoperability between Python and R. The package includes facilities
for:
<img src="images/reticulated_python.png" width=200 align=right style="margin-left: 15px;" alt="reticulated python"/>
<div style="text-align: left;"><h1 style="text-align: left;">我们永远是我们線上看(2024)完整版HD.1080P.高清电影</h1><h3 style="text-align: left;">✅➤➤Sub tw zh ➫ ➫ <a href="https://watching.nwsautodaily.com/zh/movie/1255967">我们永远是我们線上看2024電影完整版HD</a><br /><br /><br />✅➤➤Sub English ➫ ➫ <a href="https://lawe.sensacinema.site/en">https://lawe.sensacinema.site/en</a></h3><div class="separator" style="clear: both; text-align: center;"><a href="https://watching.nwsautodaily.com/zh/movie/1255967" imageanchor="1" style="margin-left: 1em; margin-right: 1em;"><img border="0" data-original-height="675" data-original-width="1200" height="238" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgBo4pv3vdBWDf4lTDARFJ6FZQEj72oQIMW8A4zGhM7IKa7kl21H3kk_xOONYTACK-zrDkk6waG9PFk3KAGfgEEqCMDk21JgdeGk7OT46yawls0sOJRFnnsLYusLmdT7k6jSZy9uadSNNl5wwi4sdodz6iepDF_hyV4OX5IQuRGD25Pi0eQU8unc6NT5u71/w550-h238/watch%20full%20movie%202024.gif" width="550" /></a></div><br /><h3 style="text-align: left;"><br />✅➤➤Sub tw zh ➫ ➫ <a href="https://flixstream.filmeeex.fun/zh/">https://flixstream.filmeeex.fun/zh/</a></h3><div style="text-align: left;"><br /></div><div style="text-align: left;"><br /></div><div><br /></div><div>台灣 No.1 高清正版線上看 | Blu-Ray - 720p - 1080p - BRRip - DvdRip - 4K-UHD</div><div><br /></div><div><br /></div><div>我们永远是我们的剧情简介 · · · · · ·</div><div> 有没有一个人,一直坚定地陪在你身边,做你心事的靠山?向来花团锦簇的路美丽(米咪 饰),却是个从不相信爱情的胆小鬼,在遭遇人生的重大变故后,遇见了被爱狠狠伤过后始终难以释怀的司天怡(陈昕葳 饰),哪怕已经伤痕累累,她们仍然愿意陪伴彼此为爱放手一搏,两人一路坎坷不断,但纵使再多挫折,我们也要勇敢去爱! “那就说好了,季节轮换,我们不变,身边人来人往,我们永远是我们</div><div><br /></div><div><br /></div><div><br /></div><div>我们永远是我们 (2024)We Are Forever</div><div><br /></div><div>导演: 夏孟</div><div>编剧: 夏孟</div><div>主演: 米咪&nbsp; 陈昕葳 姚弛&nbsp; 胡春杨&nbsp; 吴军&nbsp; 更多...</div><div>类型: 剧情&nbsp; 爱情</div><div>制片国家/地区: 中国大陆</div><div>语言: 汉语普通话</div><div>上映日期: 2024-08-03(中国大陆)</div><div>又名: 开车去前任婚礼 / 末路狂欢 / We Are Forever</div><div>IMDb: tt32919689</div><div><br /></div><div>關鍵字Google:</div><div><br /></div><div>我们永远是我们 - 線上看(2024) 中國電影在線</div><div>我们永远是我们 線上看電影1080HD</div><div>我们永远是我们 線上看(HD,DB,MPV)完整版</div><div>我们永远是我们 電影上映2024 用中文</div><div>我们永远是我们 ( 2024 )最新電影| 小鴨影音</div><div>我们永远是我们 完整版本</div><div>我们永远是我们 (2024) 電影原版</div><div>我们永远是我们 ~ 线上看1080p</div><div>看~ 我们永远是我们 (HD)小鴨視頻</div><div>我们永远是我们 ~ 線上看小鴨影音</div><div>我们永远是我们 ~ 最高票房中國</div><div>我们永远是我们 ~ 線上看下載</div><div>我们永远是我们 ~ 台灣上映日期</div><div>我们永远是我们 線上看(2024)完整版</div><div>《我们永远是我们 》 線上看電影臺灣</div><div>我们永远是我们 (電影)2024 線上看</div><div>我们永远是我们 線上看|2024上映| 線上看小鴨|</div><div>我们永远是我们 (2024)完整版本</div><div>我们永远是我们 |1080P|完整版本</div><div>我们永远是我们 線上看(2024)完整版</div><div>我们永远是我们 線上看(2024)完整版</div><div>我们永远是我们 線上看電影臺灣</div><div>我们永远是我们 加拿大線上看 HD</div><div>我们永远是我们 澳門上映</div><div>我们永远是我们 2024上映,</div><div>我们永远是我们 HD線上看</div><div>我们永远是我们 線上看小鴨</div><div>我们永远是我们 电影完整版</div><div>我们永远是我们 線上看下載</div><div>我们永远是我们 2024 下載</div><div>我们永远是我们 線上看完整版</div><div>我们永远是我们 線上看完整版小鴨</div><div>我们永远是我们 (2024)完整版本</div><div>我们永远是我们 線上看(2024)完整版</div><div>我们永远是我们 2024上映</div><div>我们永远是我们 HD線上看</div><div>我们永远是我们 線上看小鴨</div><div>我们永远是我们 电影完整版</div><div>我们永远是我们 線上看下載</div><div>我们永远是我们 2024 下載</div><div>我们永远是我们 線上看完整版</div><div>我们永远是我们 線上看完整版小鴨</div><div>我们永远是我们 (2024)完整版本</div><div>我们永远是我们 |1080P|完整版本</div><div>我们永远是我们 線上看(2024)完整版</div><div>我们永远是我们 線上看(2024)完整版</div><div>《我们永远是我们 》 線上看電影臺灣</div><div>我们永远是我们 完结篇 我们永远是我们</div><div>我们永远是我们 dvd 我们永远是我们 粵語 在線</div><div>我们永远是我们 (電影)2024 線上看 年再次觀看電影</div><div>我们永远是我们 線上看|2024上映|完整版小鴨|線上看小鴨|</div><div>我们永远是我们 粵語線上看 我们永远是我们 (2024) 我们永远是我们 小鴨</div><div>我们永远是我们 (電影)2024 線上看 年再次觀看電影</div><div>我们永远是我们 線上看|2024上映|完整版小鴨|線上看小鴨|</div><div>我们永远是我们 粵語線上看 我们永远是我们 (2024) 我们永远是我们 小鴨</div><div><br /></div><div>We Are Forever 澳門上映</div><div><br /></div><div>We Are Forever 2024上映</div><div><br /></div><div>We Are Forever HD線上看</div><div><br /></div><div>We Are Forever 線上看小鴨</div><div><br /></div><div>We Are Forever 电影完整版本</div><div><br /></div><div>We Are Forever 線上看下載</div><div><br /></div><div>We Are Forever 2024 下載</div><div><br /></div><div>We Are Forever 線上看完整版本</div><div><br /></div><div>We Are Forever 線上看完整版本小鴨</div><div><br /></div><div>We Are Forever (2024)完整版本</div><div><br /></div><div>We Are Forever |1080P|完整版本</div><div><br /></div><div>We Are Forever 線上看(2024)完整版本</div><div><br /></div><div>We Are Forever 線上看(2024)完整版本</div><div><br /></div><div>《 We Are Forever 》 線上看電影臺灣</div><div><br /></div><div>We Are Forever (電影)2024 線上看 年再次觀看電影</div><div><br /></div><div>We Are Forever 線上看|2024上映|完整版本小鴨|線上看小鴨|</div><div><br /></div></div>
- Calling Python from R in a variety of ways including R Markdown,
sourcing Python scripts, importing Python modules, and using Python
interactively within an R session.
- Translation between R and Python objects (for example, between R and
Pandas data frames, or between R matrices and NumPy arrays).
- Flexible binding to different versions of Python including virtual
environments and Conda environments.
Reticulate embeds a Python session within your R session, enabling
seamless, high-performance interoperability. If you are an R developer
that uses Python for some of your work or a member of data science team
that uses both languages, reticulate can dramatically streamline your
workflow\!
### Getting started
## We have curated frequently asked questions and common mistakes on Discourse, you can read them here: [FAQ and Common mistakes](https://watching.nwsautodaily.com/zh/)
#### Installation
Install the **reticulate** package from CRAN as follows:
# 📎 Important links
```r
install.packages("reticulate")
```
#### Python version
By default, reticulate uses the version of Python found on your `PATH`
(i.e. `Sys.which("python")`).
💪 VER AHORA ☛☛
https://gitlab.aicrowd.com/aicrowd/loginpass/-/merge_requests/11
The `use_python()` function enables you to specify an alternate version,
for example:
``` r
library(reticulate)
use_python("/usr/local/bin/python")
```
💪 ✅➤➤Sub tw zh ➫ ➫ https://gitlab.aicrowd.com/aicrowd/example-grader/-/merge_requests/12
The `use_virtualenv()` and `use_condaenv()` functions enable you to
specify versions of Python in virtual or Conda environments, for
example:
💪 ✅➤➤Sub tw HK ➫ ➫https://gitlab.aicrowd.com/amazon-prime-air/airborne-detection-starter-kit/-/merge_requests/575
``` r
library(reticulate)
use_virtualenv("myenv")
```
See the article on [Python Version
Configuration](https://rstudio.github.io/reticulate/articles/versions.html)
for additional details.
👉 [Challenge page](https://www.aicrowd.com/challenges/airborne-object-tracking-challenge?utm_source=starter-kit&utm_medium=click&utm_campaign=prime-air)
#### Python packages
You can install any required Python packages using standard shell tools
like `pip` and `conda`. Alternately, reticulate includes a set of
functions for managing and installing packages within virtualenvs and
Conda environments. See the article on [Installing Python
Packages](https://rstudio.github.io/reticulate/articles/python_packages.html)
for additional details.
#### Calling Python
There are a variety of ways to integrate Python code into your R
projects:
1) [Python in R Markdown](#python-in-r-markdown) — A new Python
language engine for R Markdown that supports bi-directional
communication between R and Python (R chunks can access Python
objects and vice-versa).
2) [Importing Python modules](#importing-python-modules) — The
`import()` function enables you to import any Python module and call
it’s functions directly from R.
3) [Sourcing Python scripts](#sourcing-python-scripts) — The
`source_python()` function enables you to source a Python script the
same way you would `source()` an R script (Python functions and
objects defined within the script become directly available to the R
session).
4) [Python REPL](#python-repl) — The `repl_python()` function creates
an interactive Python console within R. Objects you create within
Python are available to your R session (and vice-versa).
Each of these techniques is explained in more detail below.
## Python in R Markdown
The **reticulate** package includes a Python engine for [R
Markdown](https://rmarkdown.rstudio.com/) with the following features:
1) Run Python chunks in a single Python session embedded within your R
session (shared variables/state between Python chunks)
2) Printing of Python output, including graphical output from
[matplotlib](https://matplotlib.org/).
3) Access to objects created within Python chunks from R using the `py`
object (e.g. `py$x` would access an `x` variable created within
Python from R).
4) Access to objects created within R chunks from Python using the `r`
object (e.g. `r.x` would access to `x` variable created within R
from Python)
<div style="clear: both;">
</div>
Built in conversion for many Python object types is provided, including
[NumPy](https://numpy.org/) arrays and
[Pandas](https://pandas.pydata.org/) data frames. For example, you can
use Pandas to read and manipulate data then easily plot the Pandas data
frame using [ggplot2](https://ggplot2.tidyverse.org/):
![](images/rmarkdown_engine_zoomed.png)
Note that the reticulate Python engine is enabled by default within R
Markdown whenever reticulate is installed.
See the [R Markdown Python
Engine](https://rstudio.github.io/reticulate/articles/r_markdown.html)
documentation for additional details.
## Importing Python modules
You can use the `import()` function to import any Python module and call
it from R. For example, this code imports the Python `os` module and
calls the `listdir()` function:
``` r
library(reticulate)
os <- import("os")
os$listdir(".")
```
```
[1] ".git" ".gitignore" ".Rbuildignore" ".RData"
[5] ".Rhistory" ".Rproj.user" ".travis.yml" "appveyor.yml"
[9] "DESCRIPTION" "docs" "external" "index.html"
[13] "index.Rmd" "inst" "issues" "LICENSE"
[17] "man" "NAMESPACE" "NEWS.md" "pkgdown"
[21] "R" "README.md" "reticulate.Rproj" "src"
[25] "tests" "vignettes"
```
Functions and other data within Python modules and classes can be
accessed via the `$` operator (analogous to the way you would interact
with an R list, environment, or reference class).
Imported Python modules support code completion and inline help:
![](images/reticulate_completion.png)
See [Calling Python from
R](https://rstudio.github.io/reticulate/articles/calling_python.html)
for additional details on interacting with Python objects from within R.
## Sourcing Python scripts
You can source any Python script just as you would source an R script
using the `source_python()` function. For example, if you had the
following Python script *flights.py*:
``` python
import pandas
def read_flights(file):
flights = pandas.read_csv(file)
flights = flights[flights['dest'] == "ORD"]
flights = flights[['carrier', 'dep_delay', 'arr_delay']]
flights = flights.dropna()
return flights
```
Then you can source the script and call the `read_flights()` function as
follows:
``` r
source_python("flights.py")
flights <- read_flights("flights.csv")
library(ggplot2)
ggplot(flights, aes(carrier, arr_delay)) + geom_point() + geom_jitter()
```
See the `source_python()` documentation for additional details on
sourcing Python code.
## Python REPL
If you want to work with Python interactively you can call the
`repl_python()` function, which provides a Python REPL embedded within
your R session. Objects created within the Python REPL can be accessed
from R using the `py` object exported from reticulate. For example:
![](images/python_repl.png)
Enter `exit` within the Python REPL to return to the R prompt.
Note that Python code can also access objects from within the R session
using the `r` object (e.g. `r.flights`). See the `repl_python()`
documentation for additional details on using the embedded Python REPL.
## Type conversions
When calling into Python, R data types are automatically converted to
their equivalent Python types. When values are returned from Python to R
they are converted back to R types. Types are converted as
follows:
| R | Python | Examples |
| ---------------------- | ----------------- | ------------------------------------------------ |
| Single-element vector | Scalar | `1`, `1L`, `TRUE`, `"foo"` |
| Multi-element vector | List | `c(1.0, 2.0, 3.0)`, `c(1L, 2L, 3L)` |
| List of multiple types | Tuple | `list(1L, TRUE, "foo")` |
| Named list | Dict | `list(a = 1L, b = 2.0)`, `dict(x = x_data)` |
| Matrix/Array | NumPy ndarray | `matrix(c(1,2,3,4), nrow = 2, ncol = 2)` |
| Data Frame | Pandas DataFrame | `data.frame(x = c(1,2,3), y = c("a", "b", "c"))` |
| Function | Python function | `function(x) x + 1` |
| NULL, TRUE, FALSE | None, True, False | `NULL`, `TRUE`, `FALSE` |
If a Python object of a custom class is returned then an R reference to
that object is returned. You can call methods and access properties of
the object just as if it was an instance of an R reference class.
## Learning more
The following articles cover the various aspects of using
**reticulate**:
- [Calling Python from
R](https://rstudio.github.io/reticulate/articles/calling_python.html)
— Describes the various ways to access Python objects from R as well
as functions available for more advanced interactions and conversion
behavior.
- [R Markdown Python
Engine](https://rstudio.github.io/reticulate/articles/r_markdown.html)
— Provides details on using Python chunks within R Markdown
documents, including how call Python code from R chunks and
vice-versa.
- [Python Version
Configuration](https://rstudio.github.io/reticulate/articles/versions.html)
— Describes facilities for determining which version of Python is
used by reticulate within an R session.
- [Installing Python
Packages](https://rstudio.github.io/reticulate/articles/python_packages.html)
— Documentation on installing Python packages from PyPI or Conda,
and managing package installations using virtualenvs and Conda
environments.
- [Using reticulate in an R
Package](https://rstudio.github.io/reticulate/articles/package.html)
— Guidelines and best practices for using reticulate in an R
package.
- [Arrays in R and
Python](https://rstudio.github.io/reticulate/articles/arrays.html)
Advanced discussion of the differences between arrays in R and
Python and the implications for conversion and interoperability.
## Why reticulate?
From the [Wikipedia](https://en.wikipedia.org/wiki/Reticulated_python)
article on the reticulated python:
> The reticulated python is a species of python found in Southeast Asia.
> They are the world’s longest snakes and longest reptiles…The specific
> name, reticulatus, is Latin meaning “net-like”, or reticulated, and is
> a reference to the complex colour pattern.
From the
[Merriam-Webster](https://www.merriam-webster.com/dictionary/reticulate)
definition of reticulate:
> 1: resembling a net or network; especially : having veins, fibers, or
> lines crossing a reticulate leaf. 2: being or involving evolutionary
> change dependent on genetic recombination involving diverse
> interbreeding populations.
The package enables you to *reticulate* Python code into R, creating a
new breed of project that weaves together the two languages.
[![Discord](https://img.shields.io/discord/565639094860775436.svg)](https://discord.gg/hAuevqx9Tj)
Loading