Skip to content
Snippets Groups Projects
Commit 0e4dc1c8 authored by Jyotish P's avatar Jyotish P
Browse files

Add local tests

parent 416c43d5
No related branches found
No related tags found
No related merge requests found
...@@ -37,7 +37,7 @@ def append_results(results): ...@@ -37,7 +37,7 @@ def append_results(results):
def main(): def main():
predictor = initialize_predictor() predictor = initialize_predictor()
test_data = pd.read_csv(Constants.TEST_DATA_PATH) test_data = pd.read_csv(Constants.TEST_DATA_PATH, header=None)
for _, row in test_data.iterrows(): for _, row in test_data.iterrows():
result = predict_batch(predictor, [row]) result = predict_batch(predictor, [row])
......
...@@ -7,8 +7,7 @@ from sklearn.metrics import f1_score, log_loss ...@@ -7,8 +7,7 @@ from sklearn.metrics import f1_score, log_loss
class Constants: class Constants:
SHARED_DISK = os.getenv("AICROWD_SHARED_DIR", "test/shared") SHARED_DISK = os.getenv("AICROWD_SHARED_DIR", "test/shared")
PREDICTIONS_DIR = os.getenv("AICROWD_PREDICTIONS_DIR", "test/predictions") GROUND_TRUTH_DIR = os.getenv("AICROWD_GROUND_TRUTH_DIR", "test/ground_truth")
GROUND_TRUTH_DIR = os.getenv("AICROWD_GROUND_TRUTH_DIR", "test")
PREDICTIONS_FILE_PATH = os.path.join(SHARED_DISK, "predictions.csv") PREDICTIONS_FILE_PATH = os.path.join(SHARED_DISK, "predictions.csv")
GROUND_TRUTH_PATH = os.path.join(GROUND_TRUTH_DIR, "test_ground_truth.csv") GROUND_TRUTH_PATH = os.path.join(GROUND_TRUTH_DIR, "test_ground_truth.csv")
...@@ -27,7 +26,7 @@ class AIcrowdEvaluator: ...@@ -27,7 +26,7 @@ class AIcrowdEvaluator:
labels = [i for i in range(0, 10)] labels = [i for i in range(0, 10)]
y_pred = np.zeros((len(predictions), len(labels))) y_pred = np.zeros((len(predictions), len(labels)))
for index, val in enumerate(submission): for index, val in enumerate(predictions):
y_pred[index][val] = 1 y_pred[index][val] = 1
...@@ -39,3 +38,9 @@ class AIcrowdEvaluator: ...@@ -39,3 +38,9 @@ class AIcrowdEvaluator:
"score_secondary": log_loss_score, "score_secondary": log_loss_score,
} }
if __name__ == "__main__":
evaluator = AIcrowdEvaluator()
score = evaluator.evaluate()
print(score)
2
3
6
1
2
4
6
9
0
1
2
3
4
5
6
7
8
9
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment