Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
N
neurips2020-flatland-starter-kit
Manage
Activity
Members
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Model registry
Analyze
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
adrian_egli
neurips2020-flatland-starter-kit
Commits
87273288
There was an error fetching the commit references. Please try again later.
Commit
87273288
authored
4 years ago
by
Egli Adrian (IT-SCI-API-PFI)
Browse files
Options
Downloads
Patches
Plain Diff
small fix in object
parent
f1cb653e
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
reinforcement_learning/ppo/ppo_agent.py
+111
-50
111 additions, 50 deletions
reinforcement_learning/ppo/ppo_agent.py
with
111 additions
and
50 deletions
reinforcement_learning/ppo/ppo_agent.py
+
111
−
50
View file @
87273288
...
...
@@ -40,37 +40,85 @@ class DataBuffers:
self
.
memory
.
update
({
handle
:
transitions
})
class
PPOModelNetwork
(
nn
.
Module
):
class
GlobalModel
(
nn
.
Module
):
def
__init__
(
self
,
state_size
,
action_size
,
hidsize1
=
128
,
hidsize2
=
128
):
super
(
PPOModelNetwork
,
self
).
__init__
()
self
.
fc_layer_1_val
=
nn
.
Linear
(
state_size
,
hidsize1
)
self
.
shared_network
=
nn
.
Linear
(
hidsize1
,
hidsize2
)
self
.
fc_policy_pi
=
nn
.
Linear
(
hidsize2
,
action_size
)
self
.
fc_value
=
nn
.
Linear
(
hidsize2
,
1
)
super
(
GlobalModel
,
self
).
__init__
()
self
.
_layer_1
=
nn
.
Linear
(
state_size
,
hidsize1
)
self
.
global_network
=
nn
.
Linear
(
hidsize1
,
hidsize2
)
def
get_model
(
self
):
return
self
.
global_network
def
forward
(
self
,
x
):
val
=
F
.
relu
(
self
.
fc
_layer_1
_val
(
x
))
val
=
F
.
relu
(
self
.
shared
_network
(
val
))
val
=
F
.
relu
(
self
.
_layer_1
(
x
))
val
=
F
.
relu
(
self
.
global
_network
(
val
))
return
val
def
policy_pi_estimator
(
self
,
x
,
softmax_dim
=
0
):
x
=
F
.
tanh
(
self
.
forward
(
x
))
x
=
self
.
fc_policy_pi
(
x
)
def
save
(
self
,
filename
):
# print("Saving model from checkpoint:", filename)
torch
.
save
(
self
.
global_network
.
state_dict
(),
filename
+
"
.global
"
)
def
_load
(
self
,
obj
,
filename
):
if
os
.
path
.
exists
(
filename
):
print
(
'
>>
'
,
filename
)
try
:
obj
.
load_state_dict
(
torch
.
load
(
filename
,
map_location
=
device
))
except
:
print
(
"
>> failed!
"
)
return
obj
def
load
(
self
,
filename
):
self
.
global_network
=
self
.
_load
(
self
.
global_network
,
filename
+
"
.global
"
)
class
PolicyNetwork
(
nn
.
Module
):
def
__init__
(
self
,
state_size
,
action_size
,
global_network
,
hidsize1
=
128
,
hidsize2
=
128
):
super
(
PolicyNetwork
,
self
).
__init__
()
self
.
global_network
=
global_network
self
.
policy_network
=
nn
.
Linear
(
hidsize2
,
action_size
)
def
forward
(
self
,
x
,
softmax_dim
=
0
):
x
=
F
.
tanh
(
self
.
global_network
.
forward
(
x
))
x
=
self
.
policy_network
(
x
)
prob
=
F
.
softmax
(
x
,
dim
=
softmax_dim
)
return
prob
def
value_estimator
(
self
,
x
):
x
=
F
.
tanh
(
self
.
forward
(
x
))
v
=
self
.
fc_value
(
x
)
# Checkpointing methods
def
save
(
self
,
filename
):
# print("Saving model from checkpoint:", filename)
torch
.
save
(
self
.
policy_network
.
state_dict
(),
filename
+
"
.policy
"
)
def
_load
(
self
,
obj
,
filename
):
if
os
.
path
.
exists
(
filename
):
print
(
'
>>
'
,
filename
)
try
:
obj
.
load_state_dict
(
torch
.
load
(
filename
,
map_location
=
device
))
except
:
print
(
"
>> failed!
"
)
return
obj
def
load
(
self
,
filename
):
print
(
"
load policy from file
"
,
filename
)
self
.
policy_network
=
self
.
_load
(
self
.
policy_network
,
filename
+
"
.policy
"
)
class
ValueNetwork
(
nn
.
Module
):
def
__init__
(
self
,
state_size
,
action_size
,
global_network
,
hidsize1
=
128
,
hidsize2
=
128
):
super
(
ValueNetwork
,
self
).
__init__
()
self
.
global_network
=
global_network
self
.
value_network
=
nn
.
Linear
(
hidsize2
,
1
)
def
forward
(
self
,
x
):
x
=
F
.
tanh
(
self
.
global_network
.
forward
(
x
))
v
=
self
.
value_network
(
x
)
return
v
# Checkpointing methods
def
save
(
self
,
filename
):
# print("Saving model from checkpoint:", filename)
torch
.
save
(
self
.
shared_network
.
state_dict
(),
filename
+
"
.fc_shared
"
)
torch
.
save
(
self
.
fc_policy_pi
.
state_dict
(),
filename
+
"
.fc_pi
"
)
torch
.
save
(
self
.
fc_value
.
state_dict
(),
filename
+
"
.fc_v
"
)
torch
.
save
(
self
.
value_network
.
state_dict
(),
filename
+
"
.value
"
)
def
_load
(
self
,
obj
,
filename
):
if
os
.
path
.
exists
(
filename
):
...
...
@@ -82,32 +130,40 @@ class PPOModelNetwork(nn.Module):
return
obj
def
load
(
self
,
filename
):
print
(
"
load policy from file
"
,
filename
)
self
.
shared_network
=
self
.
_load
(
self
.
shared_network
,
filename
+
"
.fc_shared
"
)
self
.
fc_policy_pi
=
self
.
_load
(
self
.
fc_policy_pi
,
filename
+
"
.fc_pi
"
)
self
.
fc_value
=
self
.
_load
(
self
.
fc_value
,
filename
+
"
.fc_v
"
)
self
.
value_network
=
self
.
_load
(
self
.
value_network
,
filename
+
"
.value
"
)
class
PPOAgent
(
Policy
):
def
__init__
(
self
,
state_size
,
action_size
):
super
(
PPOAgent
,
self
).
__init__
()
# create the data buffer - collects all transitions (state, action, reward, next_state, action_prob, done)
# each agent owns its own buffer
self
.
memory
=
DataBuffers
()
# signal - stores the current loss
self
.
loss
=
0
self
.
value_model_network
=
PPOModelNetwork
(
state_size
,
action_size
)
self
.
optimizer
=
optim
.
Adam
(
self
.
value_model_network
.
parameters
(),
lr
=
LEARNING_RATE
)
# create the global, shared deep neuronal network
self
.
global_network
=
GlobalModel
(
state_size
,
action_size
)
# create the "critic" or value network
self
.
value_network
=
ValueNetwork
(
state_size
,
action_size
,
self
.
global_network
)
# create the "actor" or policy network
self
.
policy_network
=
PolicyNetwork
(
state_size
,
action_size
,
self
.
global_network
)
# create for each network a optimizer
self
.
value_optimizer
=
optim
.
Adam
(
self
.
value_network
.
parameters
(),
lr
=
LEARNING_RATE
)
self
.
policy_optimizer
=
optim
.
Adam
(
self
.
policy_network
.
parameters
(),
lr
=
LEARNING_RATE
)
def
reset
(
self
):
pass
def
act
(
self
,
state
,
eps
=
None
):
prob
=
self
.
value_model_network
.
policy_pi_estimat
or
(
torch
.
from_numpy
(
state
).
float
())
prob
=
self
.
policy_netw
or
k
(
torch
.
from_numpy
(
state
).
float
())
m
=
Categorical
(
prob
)
a
=
m
.
sample
().
item
()
return
a
def
step
(
self
,
handle
,
state
,
action
,
reward
,
next_state
,
done
):
# Record the results of the agent's action as transition
prob
=
self
.
value_model_network
.
policy_pi_estimat
or
(
torch
.
from_numpy
(
state
).
float
())
prob
=
self
.
policy_netw
or
k
(
torch
.
from_numpy
(
state
).
float
())
transition
=
(
state
,
action
,
reward
,
next_state
,
prob
[
action
].
item
(),
done
)
self
.
memory
.
push_transition
(
handle
,
transition
)
...
...
@@ -149,10 +205,10 @@ class PPOAgent(Policy):
# run K_EPOCH optimisation steps
for
i
in
range
(
K_EPOCH
):
# temporal difference function / and prepare advantage function data
estimated_target_value
=
rewards
+
GAMMA
*
self
.
value_model_network
.
value_estimator
(
states_next
)
*
(
1.0
-
dones
)
difference_to_expected_value_deltas
=
estimated_target_value
-
self
.
value_model_network
.
value_estimator
(
states
)
estimated_target_value
=
\
rewards
+
GAMMA
*
self
.
value_network
(
states_next
)
*
(
1.0
-
dones
)
difference_to_expected_value_deltas
=
\
estimated_target_value
-
self
.
value_network
(
states
)
difference_to_expected_value_deltas
=
difference_to_expected_value_deltas
.
detach
().
numpy
()
# build advantage function and convert it to torch tensor (array)
...
...
@@ -165,37 +221,41 @@ class PPOAgent(Policy):
advantages
=
torch
.
tensor
(
advantage_list
,
dtype
=
torch
.
float
)
# estimate pi_action for all state
pi_actions
=
self
.
value_model_network
.
policy_pi_estimator
(
states
,
softmax_dim
=
1
).
gather
(
1
,
actions
)
pi_actions
=
self
.
policy_network
.
forward
(
states
,
softmax_dim
=
1
).
gather
(
1
,
actions
)
# calculate the ratios
ratios
=
torch
.
exp
(
torch
.
log
(
pi_actions
)
-
torch
.
log
(
probs_action
))
# Normal Policy Gradient objective
surrogate_objective
=
ratios
*
advantages
# clipped version of Normal Policy Gradient objective
clipped_surrogate_objective
=
torch
.
clamp
(
ratios
*
advantages
,
1
-
EPS_CLIP
,
1
+
EPS_CLIP
)
# value function
loss
value_loss
=
F
.
mse_loss
(
self
.
value_
model_
network
.
value_estimator
(
states
),
#
create
value
loss
function
value_loss
=
F
.
mse_loss
(
self
.
value_network
(
states
),
estimated_target_value
.
detach
())
#
loss
#
create final loss function
loss
=
-
torch
.
min
(
surrogate_objective
,
clipped_surrogate_objective
)
+
value_loss
# update policy and actor networks
self
.
optimizer
.
zero_grad
()
# update policy ("actor") and value ("critic") networks
self
.
value_optimizer
.
zero_grad
()
self
.
policy_optimizer
.
zero_grad
()
loss
.
mean
().
backward
()
self
.
optimizer
.
step
()
self
.
value_optimizer
.
step
()
self
.
policy_optimizer
.
step
()
# store current loss
to the agent
# store current loss
self
.
loss
=
loss
.
mean
().
detach
().
numpy
()
self
.
memory
.
reset
()
def
end_episode
(
self
,
train
):
if
train
:
self
.
train_net
()
# Checkpointing methods
def
save
(
self
,
filename
):
# print("Saving model from checkpoint:", filename)
self
.
value_model_network
.
save
(
filename
)
torch
.
save
(
self
.
optimizer
.
state_dict
(),
filename
+
"
.optimizer
"
)
self
.
global_network
.
save
(
filename
)
self
.
value_network
.
save
(
filename
)
self
.
policy_network
.
save
(
filename
)
torch
.
save
(
self
.
value_optimizer
.
state_dict
(),
filename
+
"
.value_optimizer
"
)
torch
.
save
(
self
.
policy_optimizer
.
state_dict
(),
filename
+
"
.policy_optimizer
"
)
def
_load
(
self
,
obj
,
filename
):
if
os
.
path
.
exists
(
filename
):
...
...
@@ -207,15 +267,16 @@ class PPOAgent(Policy):
return
obj
def
load
(
self
,
filename
):
print
(
"
load policy from file
"
,
filename
)
self
.
value_model_network
.
load
(
filename
)
print
(
"
load optimizer from file
"
,
filename
)
self
.
optimizer
=
self
.
_load
(
self
.
optimizer
,
filename
+
"
.optimizer
"
)
self
.
global_network
.
load
(
filename
)
self
.
value_network
.
load
(
filename
)
self
.
policy_network
.
load
(
filename
)
self
.
value_optimizer
=
self
.
_load
(
self
.
value_optimizer
,
filename
+
"
.value_optimizer
"
)
self
.
policy_optimizer
=
self
.
_load
(
self
.
policy_optimizer
,
filename
+
"
.policy_optimizer
"
)
def
clone
(
self
):
policy
=
PPOAgent
(
self
.
state_size
,
self
.
action_size
)
policy
.
fc1
=
copy
.
deepcopy
(
self
.
fc1
)
policy
.
fc_pi
=
copy
.
deepcopy
(
self
.
fc_pi
)
policy
.
fc_v
=
copy
.
deepcopy
(
self
.
fc_v
)
policy
.
optimizer
=
copy
.
deepcopy
(
self
.
optimizer
)
policy
.
value_network
=
copy
.
deepcopy
(
self
.
value_network
)
policy
.
policy_network
=
copy
.
deepcopy
(
self
.
policy_network
)
policy
.
value_optimizer
=
copy
.
deepcopy
(
self
.
value_optimizer
)
policy
.
policy_
optimizer
=
copy
.
deepcopy
(
self
.
policy_
optimizer
)
return
self
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment