Skip to content
Snippets Groups Projects
custom_observation_example_02_SingleAgentNavigationObs.py 3.73 KiB
Newer Older
import getopt
import random
import sys
import time
from flatland.core.env_observation_builder import ObservationBuilder
from flatland.core.grid.grid4_utils import get_new_position
from flatland.envs.rail_env import RailEnv
from flatland.envs.rail_generators import complex_rail_generator
from flatland.envs.schedule_generators import complex_schedule_generator
u214892's avatar
u214892 committed
from flatland.utils.misc import str2bool
from flatland.utils.rendertools import RenderTool

random.seed(100)
np.random.seed(100)


class SingleAgentNavigationObs(ObservationBuilder):
    We build a representation vector with 3 binary components, indicating which of the 3 available directions
    for each agent (Left, Forward, Right) lead to the shortest path to its target.
    E.g., if taking the Left branch (if available) is the shortest route to the agent's target, the observation vector
    will be [1, 0, 0].
    """

    def __init__(self):
    def get(self, handle: int = 0) -> List[int]:
        agent = self.env.agents[handle]

Erik Nygren's avatar
Erik Nygren committed
        if agent.position:
            possible_transitions = self.env.rail.get_transitions(*agent.position, agent.direction)
        else:
            possible_transitions = self.env.rail.get_transitions(*agent.initial_position, agent.direction)

        num_transitions = np.count_nonzero(possible_transitions)

        # Start from the current orientation, and see which transitions are available;
        # organize them as [left, forward, right], relative to the current orientation
        # If only one transition is possible, the forward branch is aligned with it.
        if num_transitions == 1:
            observation = [0, 1, 0]
        else:
            min_distances = []
            for direction in [(agent.direction + i) % 4 for i in range(-1, 2)]:
                if possible_transitions[direction]:
                    new_position = get_new_position(agent.position, direction)
u214892's avatar
u214892 committed
                    min_distances.append(
                        self.env.distance_map.get()[handle, new_position[0], new_position[1], direction])
                else:
                    min_distances.append(np.inf)

            observation = [0, 0, 0]
            observation[np.argmin(min_distances)] = 1

        return observation


def main(args):
    try:
        opts, args = getopt.getopt(args, "", ["sleep-for-animation=", ""])
    except getopt.GetoptError as err:
        print(str(err))  # will print something like "option -a not recognized"
        sys.exit(2)
    sleep_for_animation = True
        if o in ("--sleep-for-animation"):
u214892's avatar
u214892 committed
            sleep_for_animation = str2bool(a)
        else:
            assert False, "unhandled option"

    env = RailEnv(width=7, height=7,
                  rail_generator=complex_rail_generator(nr_start_goal=10, nr_extra=1, min_dist=5, max_dist=99999,
                                                        seed=1), schedule_generator=complex_schedule_generator(),
                  number_of_agents=1, obs_builder_object=SingleAgentNavigationObs())
    obs, info = env.reset()
    env_renderer = RenderTool(env, gl="PILSVG")
    env_renderer.render_env(show=True, frames=True, show_observations=True)
    for step in range(100):
        action = np.argmax(obs[0]) + 1
        obs, all_rewards, done, _ = env.step({0: action})
        print("Rewards: ", all_rewards, "  [done=", done, "]")
        env_renderer.render_env(show=True, frames=True, show_observations=True)
            time.sleep(0.1)
        if done["__all__"]:
            break
    env_renderer.close_window()


if __name__ == '__main__':
    if 'argv' in globals():
        main(argv)
    else:
        main(sys.argv[1:])