import random import time from collections import deque import numpy as np import torch from flatland.baselines.dueling_double_dqn import Agent from flatland.envs.generators import complex_rail_generator from flatland.envs.rail_env import RailEnv from flatland.utils.rendertools import RenderTool class Player(object): def __init__(self, env): self.env = env self.handle = env.get_agent_handles() self.state_size = 105 self.action_size = 4 self.n_trials = 9999 self.eps = 1. self.eps_end = 0.005 self.eps_decay = 0.998 self.action_dict = dict() self.scores_window = deque(maxlen=100) self.done_window = deque(maxlen=100) self.scores = [] self.dones_list = [] self.action_prob = [0] * 4 self.agent = Agent(self.state_size, self.action_size, "FC", 0) # self.agent.qnetwork_local.load_state_dict(torch.load('../flatland/baselines/Nets/avoid_checkpoint9900.pth')) self.agent.qnetwork_local.load_state_dict(torch.load( '../flatland/flatland/baselines/Nets/avoid_checkpoint15000.pth')) self.iFrame = 0 self.tStart = time.time() # Reset environment # self.obs = self.env.reset() self.env.obs_builder.reset() self.obs = self.env._get_observations() for envAgent in range(self.env.get_num_agents()): norm = max(1, max_lt(self.obs[envAgent], np.inf)) self.obs[envAgent] = np.clip(np.array(self.obs[envAgent]) / norm, -1, 1) # env.obs_builder.util_print_obs_subtree(tree=obs[0], num_elements_per_node=5) self.score = 0 self.env_done = 0 def step(self): env = self.env # Pass the (stored) observation to the agent network and retrieve the action for handle in env.get_agent_handles(): action = self.agent.act(np.array(self.obs[handle]), eps=self.eps) self.action_prob[action] += 1 self.action_dict.update({handle: action}) # Environment step - pass the agent actions to the environment, # retrieve the response - observations, rewards, dones next_obs, all_rewards, done, _ = self.env.step(self.action_dict) for handle in env.get_agent_handles(): norm = max(1, max_lt(next_obs[handle], np.inf)) next_obs[handle] = np.clip(np.array(next_obs[handle]) / norm, -1, 1) # Update replay buffer and train agent for handle in self.env.get_agent_handles(): self.agent.step(self.obs[handle], self.action_dict[handle], all_rewards[handle], next_obs[handle], done[handle], train=False) self.score += all_rewards[handle] self.iFrame += 1 self.obs = next_obs.copy() if done['__all__']: self.env_done = 1 def max_lt(seq, val): """ Return greatest item in seq for which item < val applies. None is returned if seq was empty or all items in seq were >= val. """ idx = len(seq) - 1 while idx >= 0: if seq[idx] < val and seq[idx] >= 0: return seq[idx] idx -= 1 return None def main(render=True, delay=0.0): random.seed(1) np.random.seed(1) # Example generate a random rail env = RailEnv(width=15, height=15, rail_generator=complex_rail_generator(nr_start_goal=5, nr_extra=20, min_dist=12), number_of_agents=5) if render: env_renderer = RenderTool(env, gl="QTSVG") # env_renderer = RenderTool(env, gl="QT") state_size = 105 action_size = 4 n_trials = 9999 eps = 1. eps_end = 0.005 eps_decay = 0.998 action_dict = dict() scores_window = deque(maxlen=100) done_window = deque(maxlen=100) scores = [] dones_list = [] action_prob = [0] * 4 agent = Agent(state_size, action_size, "FC", 0) # agent.qnetwork_local.load_state_dict(torch.load('../flatland/baselines/Nets/avoid_checkpoint9900.pth')) def max_lt(seq, val): """ Return greatest item in seq for which item < val applies. None is returned if seq was empty or all items in seq were >= val. """ idx = len(seq) - 1 while idx >= 0: if seq[idx] < val and seq[idx] >= 0: return seq[idx] idx -= 1 return None iFrame = 0 tStart = time.time() for trials in range(1, n_trials + 1): # Reset environment obs = env.reset() if render: env_renderer.set_new_rail() for a in range(env.get_num_agents()): norm = max(1, max_lt(obs[a], np.inf)) obs[a] = np.clip(np.array(obs[a]) / norm, -1, 1) # env.obs_builder.util_print_obs_subtree(tree=obs[0], num_elements_per_node=5) score = 0 env_done = 0 # Run episode for step in range(100): # if trials > 114: # env_renderer.renderEnv(show=True) # print(step) # Action for a in range(env.get_num_agents()): action = agent.act(np.array(obs[a]), eps=eps) action_prob[action] += 1 action_dict.update({a: action}) if render: env_renderer.renderEnv(show=True, frames=True, iEpisode=trials, iStep=step, action_dict=action_dict) if delay > 0: time.sleep(delay) iFrame += 1 # Environment step next_obs, all_rewards, done, _ = env.step(action_dict) for a in range(env.get_num_agents()): norm = max(1, max_lt(next_obs[a], np.inf)) next_obs[a] = np.clip(np.array(next_obs[a]) / norm, -1, 1) # Update replay buffer and train agent for a in range(env.get_num_agents()): agent.step(obs[a], action_dict[a], all_rewards[a], next_obs[a], done[a]) score += all_rewards[a] obs = next_obs.copy() if done['__all__']: env_done = 1 break # Epsilon decay eps = max(eps_end, eps_decay * eps) # decrease epsilon done_window.append(env_done) scores_window.append(score) # save most recent score scores.append(np.mean(scores_window)) dones_list.append((np.mean(done_window))) print(('\rTraining {} Agents.\tEpisode {}\tAverage Score: {:.0f}\tDones: {:.2f}%' + '\tEpsilon: {:.2f} \t Action Probabilities: \t {}').format( env.get_num_agents(), trials, np.mean(scores_window), 100 * np.mean(done_window), eps, action_prob / np.sum(action_prob)), end=" ") if trials % 100 == 0: tNow = time.time() rFps = iFrame / (tNow - tStart) print(('\rTraining {} Agents.\tEpisode {}\tAverage Score: {:.0f}\tDones: {:.2f}%' + '\tEpsilon: {:.2f} fps: {:.2f} \t Action Probabilities: \t {}').format( env.get_num_agents(), trials, np.mean(scores_window), 100 * np.mean(done_window), eps, rFps, action_prob / np.sum(action_prob))) torch.save(agent.qnetwork_local.state_dict(), '../flatland/baselines/Nets/avoid_checkpoint' + str(trials) + '.pth') action_prob = [1] * 4 if __name__ == "__main__": main(render=True, delay=0)