import random from typing import Dict, List import numpy as np from test_utils import Replay, ReplayConfig, run_replay_config, set_penalties_for_replay from flatland.core.env_observation_builder import ObservationBuilder from flatland.core.grid.grid4 import Grid4TransitionsEnum from flatland.core.grid.grid4_utils import get_new_position from flatland.envs.agent_utils import RailAgentStatus from flatland.envs.rail_env import RailEnv, RailEnvActions from flatland.envs.rail_generators import rail_from_grid_transition_map from flatland.envs.schedule_generators import random_schedule_generator from flatland.utils.simple_rail import make_simple_rail2 class SingleAgentNavigationObs(ObservationBuilder): """ We build a representation vector with 3 binary components, indicating which of the 3 available directions for each agent (Left, Forward, Right) lead to the shortest path to its target. E.g., if taking the Left branch (if available) is the shortest route to the agent's target, the observation vector will be [1, 0, 0]. """ def __init__(self): super().__init__() def reset(self): pass def get(self, handle: int = 0) -> List[int]: agent = self.env.agents[handle] if agent.status == RailAgentStatus.READY_TO_DEPART: agent_virtual_position = agent.initial_position elif agent.status == RailAgentStatus.ACTIVE: agent_virtual_position = agent.position elif agent.status == RailAgentStatus.DONE: agent_virtual_position = agent.target else: return None possible_transitions = self.env.rail.get_transitions(*agent_virtual_position, agent.direction) num_transitions = np.count_nonzero(possible_transitions) # Start from the current orientation, and see which transitions are available; # organize them as [left, forward, right], relative to the current orientation # If only one transition is possible, the forward branch is aligned with it. if num_transitions == 1: observation = [0, 1, 0] else: min_distances = [] for direction in [(agent.direction + i) % 4 for i in range(-1, 2)]: if possible_transitions[direction]: new_position = get_new_position(agent_virtual_position, direction) min_distances.append( self.env.distance_map.get()[handle, new_position[0], new_position[1], direction]) else: min_distances.append(np.inf) observation = [0, 0, 0] observation[np.argmin(min_distances)] = 1 return observation def test_malfunction_process(): # Set fixed malfunction duration for this test stochastic_data = {'prop_malfunction': 1., 'malfunction_rate': 1000, 'min_duration': 3, 'max_duration': 3} rail, rail_map = make_simple_rail2() env = RailEnv(width=25, height=30, rail_generator=rail_from_grid_transition_map(rail), schedule_generator=random_schedule_generator(), number_of_agents=1, stochastic_data=stochastic_data, # Malfunction data generator obs_builder_object=SingleAgentNavigationObs() ) # reset to initialize agents_static obs, info = env.reset(False, False, True, random_seed=10) # Check that a initial duration for malfunction was assigned assert env.agents[0].malfunction_data['next_malfunction'] > 0 for agent in env.agents: agent.status = RailAgentStatus.ACTIVE agent_halts = 0 total_down_time = 0 agent_old_position = env.agents[0].position # Move target to unreachable position in order to not interfere with test env.agents[0].target = (0, 0) for step in range(100): actions = {} for i in range(len(obs)): actions[i] = np.argmax(obs[i]) + 1 if step % 5 == 0: # Stop the agent and set it to be malfunctioning env.agents[0].malfunction_data['malfunction'] = -1 env.agents[0].malfunction_data['next_malfunction'] = 0 agent_halts += 1 obs, all_rewards, done, _ = env.step(actions) if env.agents[0].malfunction_data['malfunction'] > 0: agent_malfunctioning = True else: agent_malfunctioning = False if agent_malfunctioning: # Check that agent is not moving while malfunctioning assert agent_old_position == env.agents[0].position agent_old_position = env.agents[0].position total_down_time += env.agents[0].malfunction_data['malfunction'] # Check that the appropriate number of malfunctions is achieved assert env.agents[0].malfunction_data['nr_malfunctions'] == 21, "Actual {}".format( env.agents[0].malfunction_data['nr_malfunctions']) # Check that 20 stops where performed assert agent_halts == 21 # Check that malfunctioning data was standing around assert total_down_time > 0 def test_malfunction_process_statistically(): """Tests hat malfunctions are produced by stochastic_data!""" # Set fixed malfunction duration for this test stochastic_data = {'prop_malfunction': 1., 'malfunction_rate': 5, 'min_duration': 5, 'max_duration': 5} rail, rail_map = make_simple_rail2() env = RailEnv(width=25, height=30, rail_generator=rail_from_grid_transition_map(rail), schedule_generator=random_schedule_generator(), number_of_agents=10, stochastic_data=stochastic_data, # Malfunction data generator obs_builder_object=SingleAgentNavigationObs() ) # reset to initialize agents_static env.reset(True, True, False, random_seed=10) env.agents[0].target = (0, 0) nb_malfunction = 0 agent_malfunction_list = [[0, 0, 0, 0, 0, 0, 6, 5, 4, 3, 2, 1, 0, 6, 5, 4, 3, 2, 1, 0], [0, 0, 0, 0, 0, 0, 0, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 6, 5], [0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 5, 4, 3, 2, 1, 0, 0, 6, 5, 4], [0, 0, 0, 0, 0, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 6, 5, 4], [6, 6, 5, 4, 3, 2, 1, 0, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0], [6, 6, 5, 4, 3, 2, 1, 0, 6, 5, 4, 3, 2, 1, 0, 0, 6, 5, 4, 3], [0, 0, 0, 0, 6, 5, 4, 3, 2, 1, 0, 6, 5, 4, 3, 2, 1, 0, 6, 5], [0, 0, 0, 0, 0, 6, 5, 4, 3, 2, 1, 0, 0, 6, 5, 4, 3, 2, 1, 0], [0, 0, 0, 0, 0, 0, 0, 6, 5, 4, 3, 2, 1, 0, 6, 5, 4, 3, 2, 1], [6, 6, 6, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 6, 5, 4, 3, 2, 1, 0]] for step in range(20): action_dict: Dict[int, RailEnvActions] = {} for agent_idx in range(env.get_num_agents()): # We randomly select an action action_dict[agent_idx] = RailEnvActions(np.random.randint(4)) # For generating tests only: # agent_malfunction_list[agent_idx].append(env.agents[agent_idx].malfunction_data['malfunction']) assert env.agents[agent_idx].malfunction_data['malfunction'] == agent_malfunction_list[agent_idx][step] env.step(action_dict) # print(agent_malfunction_list) def test_malfunction_before_entry(): """Tests that malfunctions are produced by stochastic_data!""" # Set fixed malfunction duration for this test stochastic_data = {'prop_malfunction': 1., 'malfunction_rate': 1, 'min_duration': 10, 'max_duration': 10} rail, rail_map = make_simple_rail2() env = RailEnv(width=25, height=30, rail_generator=rail_from_grid_transition_map(rail), schedule_generator=random_schedule_generator(seed=2), # seed 12 number_of_agents=10, random_seed=1, stochastic_data=stochastic_data, # Malfunction data generator ) # reset to initialize agents_static env.reset(False, False, False, random_seed=10) env.agents[0].target = (0, 0) # Print for test generation assert env.agents[0].malfunction_data['malfunction'] == 11 assert env.agents[1].malfunction_data['malfunction'] == 11 assert env.agents[2].malfunction_data['malfunction'] == 11 assert env.agents[3].malfunction_data['malfunction'] == 11 assert env.agents[4].malfunction_data['malfunction'] == 11 assert env.agents[5].malfunction_data['malfunction'] == 11 assert env.agents[6].malfunction_data['malfunction'] == 11 assert env.agents[7].malfunction_data['malfunction'] == 11 assert env.agents[8].malfunction_data['malfunction'] == 11 assert env.agents[9].malfunction_data['malfunction'] == 11 for step in range(20): action_dict: Dict[int, RailEnvActions] = {} for agent in env.agents: # We randomly select an action action_dict[agent.handle] = RailEnvActions(2) if step < 10: action_dict[agent.handle] = RailEnvActions(0) env.step(action_dict) assert env.agents[1].malfunction_data['malfunction'] == 2 assert env.agents[2].malfunction_data['malfunction'] == 2 assert env.agents[3].malfunction_data['malfunction'] == 2 assert env.agents[4].malfunction_data['malfunction'] == 2 assert env.agents[5].malfunction_data['malfunction'] == 2 assert env.agents[6].malfunction_data['malfunction'] == 2 assert env.agents[7].malfunction_data['malfunction'] == 2 assert env.agents[8].malfunction_data['malfunction'] == 2 assert env.agents[9].malfunction_data['malfunction'] == 2 # for a in range(env.get_num_agents()): # print("assert env.agents[{}].malfunction_data['malfunction'] == {}".format(a, # env.agents[a].malfunction_data[ # 'malfunction'])) def test_initial_malfunction(): stochastic_data = {'prop_malfunction': 1., # Percentage of defective agents 'malfunction_rate': 100, # Rate of malfunction occurence 'min_duration': 2, # Minimal duration of malfunction 'max_duration': 5 # Max duration of malfunction } rail, rail_map = make_simple_rail2() env = RailEnv(width=25, height=30, rail_generator=rail_from_grid_transition_map(rail), schedule_generator=random_schedule_generator(seed=10), number_of_agents=1, stochastic_data=stochastic_data, # Malfunction data generator obs_builder_object=SingleAgentNavigationObs() ) # reset to initialize agents_static env.reset(False, False, True, random_seed=10) print(env.agents[0].malfunction_data) env.agents[0].target = (0, 5) set_penalties_for_replay(env) replay_config = ReplayConfig( replay=[ Replay( position=(3, 2), direction=Grid4TransitionsEnum.EAST, action=RailEnvActions.MOVE_FORWARD, set_malfunction=3, malfunction=3, reward=env.step_penalty # full step penalty when malfunctioning ), Replay( position=(3, 2), direction=Grid4TransitionsEnum.EAST, action=RailEnvActions.MOVE_FORWARD, malfunction=2, reward=env.step_penalty # full step penalty when malfunctioning ), # malfunction stops in the next step and we're still at the beginning of the cell # --> if we take action MOVE_FORWARD, agent should restart and move to the next cell Replay( position=(3, 2), direction=Grid4TransitionsEnum.EAST, action=RailEnvActions.MOVE_FORWARD, malfunction=1, reward=env.start_penalty + env.step_penalty * 1.0 # malfunctioning ends: starting and running at speed 1.0 ), Replay( position=(3, 3), direction=Grid4TransitionsEnum.EAST, action=RailEnvActions.MOVE_FORWARD, malfunction=0, reward=env.step_penalty * 1.0 # running at speed 1.0 ), Replay( position=(3, 4), direction=Grid4TransitionsEnum.EAST, action=RailEnvActions.MOVE_FORWARD, malfunction=0, reward=env.step_penalty * 1.0 # running at speed 1.0 ) ], speed=env.agents[0].speed_data['speed'], target=env.agents[0].target, initial_position=(3, 2), initial_direction=Grid4TransitionsEnum.EAST, ) run_replay_config(env, [replay_config]) def test_initial_malfunction_stop_moving(): stochastic_data = {'prop_malfunction': 1., # Percentage of defective agents 'malfunction_rate': 70, # Rate of malfunction occurence 'min_duration': 2, # Minimal duration of malfunction 'max_duration': 5 # Max duration of malfunction } rail, rail_map = make_simple_rail2() env = RailEnv(width=25, height=30, rail_generator=rail_from_grid_transition_map(rail), schedule_generator=random_schedule_generator(), number_of_agents=1, stochastic_data=stochastic_data, # Malfunction data generator obs_builder_object=SingleAgentNavigationObs() ) # reset to initialize agents_static print(env.agents[0].initial_position, env.agents[0].direction, env.agents[0].position, env.agents[0].status) set_penalties_for_replay(env) replay_config = ReplayConfig( replay=[ Replay( position=None, direction=Grid4TransitionsEnum.EAST, action=RailEnvActions.MOVE_FORWARD, set_malfunction=3, malfunction=3, reward=env.step_penalty, # full step penalty when stopped status=RailAgentStatus.READY_TO_DEPART ), Replay( position=(3, 2), direction=Grid4TransitionsEnum.EAST, action=RailEnvActions.DO_NOTHING, malfunction=3, reward=env.step_penalty, # full step penalty when stopped status=RailAgentStatus.ACTIVE ), # malfunction stops in the next step and we're still at the beginning of the cell # --> if we take action STOP_MOVING, agent should restart without moving # Replay( position=(3, 2), direction=Grid4TransitionsEnum.EAST, action=RailEnvActions.STOP_MOVING, malfunction=2, reward=env.step_penalty, # full step penalty while stopped status=RailAgentStatus.ACTIVE ), # we have stopped and do nothing --> should stand still Replay( position=(3, 2), direction=Grid4TransitionsEnum.EAST, action=RailEnvActions.DO_NOTHING, malfunction=1, reward=env.step_penalty, # full step penalty while stopped status=RailAgentStatus.ACTIVE ), # we start to move forward --> should go to next cell now Replay( position=(3, 2), direction=Grid4TransitionsEnum.EAST, action=RailEnvActions.MOVE_FORWARD, malfunction=0, reward=env.start_penalty + env.step_penalty * 1.0, # full step penalty while stopped status=RailAgentStatus.ACTIVE ), Replay( position=(3, 3), direction=Grid4TransitionsEnum.EAST, action=RailEnvActions.MOVE_FORWARD, malfunction=0, reward=env.step_penalty * 1.0, # full step penalty while stopped status=RailAgentStatus.ACTIVE ) ], speed=env.agents[0].speed_data['speed'], target=env.agents[0].target, initial_position=(3, 2), initial_direction=Grid4TransitionsEnum.EAST, ) run_replay_config(env, [replay_config], activate_agents=False) def test_initial_malfunction_do_nothing(): random.seed(0) np.random.seed(0) stochastic_data = {'prop_malfunction': 1., # Percentage of defective agents 'malfunction_rate': 70, # Rate of malfunction occurence 'min_duration': 2, # Minimal duration of malfunction 'max_duration': 5 # Max duration of malfunction } rail, rail_map = make_simple_rail2() env = RailEnv(width=25, height=30, rail_generator=rail_from_grid_transition_map(rail), schedule_generator=random_schedule_generator(), number_of_agents=1, stochastic_data=stochastic_data, # Malfunction data generator ) # reset to initialize agents_static env.reset() set_penalties_for_replay(env) replay_config = ReplayConfig( replay=[ Replay( position=None, direction=Grid4TransitionsEnum.EAST, action=RailEnvActions.MOVE_FORWARD, set_malfunction=3, malfunction=3, reward=env.step_penalty, # full step penalty while malfunctioning status=RailAgentStatus.READY_TO_DEPART ), Replay( position=(3, 2), direction=Grid4TransitionsEnum.EAST, action=RailEnvActions.DO_NOTHING, malfunction=3, reward=env.step_penalty, # full step penalty while malfunctioning status=RailAgentStatus.ACTIVE ), # malfunction stops in the next step and we're still at the beginning of the cell # --> if we take action DO_NOTHING, agent should restart without moving # Replay( position=(3, 2), direction=Grid4TransitionsEnum.EAST, action=RailEnvActions.DO_NOTHING, malfunction=2, reward=env.step_penalty, # full step penalty while stopped status=RailAgentStatus.ACTIVE ), # we haven't started moving yet --> stay here Replay( position=(3, 2), direction=Grid4TransitionsEnum.EAST, action=RailEnvActions.DO_NOTHING, malfunction=1, reward=env.step_penalty, # full step penalty while stopped status=RailAgentStatus.ACTIVE ), Replay( position=(3, 2), direction=Grid4TransitionsEnum.EAST, action=RailEnvActions.MOVE_FORWARD, malfunction=0, reward=env.start_penalty + env.step_penalty * 1.0, # start penalty + step penalty for speed 1.0 status=RailAgentStatus.ACTIVE ), # we start to move forward --> should go to next cell now Replay( position=(3, 3), direction=Grid4TransitionsEnum.EAST, action=RailEnvActions.MOVE_FORWARD, malfunction=0, reward=env.step_penalty * 1.0, # step penalty for speed 1.0 status=RailAgentStatus.ACTIVE ) ], speed=env.agents[0].speed_data['speed'], target=env.agents[0].target, initial_position=(3, 2), initial_direction=Grid4TransitionsEnum.EAST, ) run_replay_config(env, [replay_config], activate_agents=False) def test_initial_nextmalfunction_not_below_zero(): random.seed(0) np.random.seed(0) stochastic_data = {'prop_malfunction': 1., # Percentage of defective agents 'malfunction_rate': 70, # Rate of malfunction occurence 'min_duration': 2, # Minimal duration of malfunction 'max_duration': 5 # Max duration of malfunction } rail, rail_map = make_simple_rail2() env = RailEnv(width=25, height=30, rail_generator=rail_from_grid_transition_map(rail), schedule_generator=random_schedule_generator(), number_of_agents=1, stochastic_data=stochastic_data, # Malfunction data generator obs_builder_object=SingleAgentNavigationObs() ) # reset to initialize agents_static env.reset() agent = env.agents[0] env.step({}) # was next_malfunction was -1 befor the bugfix https://gitlab.aicrowd.com/flatland/flatland/issues/186 assert agent.malfunction_data['next_malfunction'] >= 0, \ "next_malfunction should be >=0, found {}".format(agent.malfunction_data['next_malfunction'])