import getopt import random import sys import time import numpy as np from benchmarks.run_all_examples import str2bool from flatland.core.grid.grid4_utils import get_new_position from flatland.envs.observations import TreeObsForRailEnv from flatland.envs.rail_env import RailEnv from flatland.envs.rail_generators import complex_rail_generator from flatland.envs.schedule_generators import complex_schedule_generator from flatland.utils.rendertools import RenderTool random.seed(100) np.random.seed(100) class SingleAgentNavigationObs(TreeObsForRailEnv): """ We derive our bbservation builder from TreeObsForRailEnv, to exploit the existing implementation to compute the minimum distances from each grid node to each agent's target. We then build a representation vector with 3 binary components, indicating which of the 3 available directions for each agent (Left, Forward, Right) lead to the shortest path to its target. E.g., if taking the Left branch (if available) is the shortest route to the agent's target, the observation vector will be [1, 0, 0]. """ def __init__(self): super().__init__(max_depth=0) self.observation_space = [3] def reset(self): # Recompute the distance map, if the environment has changed. super().reset() def get(self, handle): agent = self.env.agents[handle] possible_transitions = self.env.rail.get_transitions(*agent.position, agent.direction) num_transitions = np.count_nonzero(possible_transitions) # Start from the current orientation, and see which transitions are available; # organize them as [left, forward, right], relative to the current orientation # If only one transition is possible, the forward branch is aligned with it. if num_transitions == 1: observation = [0, 1, 0] else: min_distances = [] for direction in [(agent.direction + i) % 4 for i in range(-1, 2)]: if possible_transitions[direction]: new_position = get_new_position(agent.position, direction) min_distances.append( self.env.distance_map.get()[handle, new_position[0], new_position[1], direction]) else: min_distances.append(np.inf) observation = [0, 0, 0] observation[np.argmin(min_distances)] = 1 return observation def main(args): try: opts, args = getopt.getopt(args, "", ["sleep-for-animation=", ""]) except getopt.GetoptError as err: print(str(err)) # will print something like "option -a not recognized" sys.exit(2) sleep_for_animation = True for o, a in opts: if o in ("--sleep-for-animation"): sleep_for_animation = str2bool(a) else: assert False, "unhandled option" env = RailEnv(width=7, height=7, rail_generator=complex_rail_generator(nr_start_goal=10, nr_extra=1, min_dist=5, max_dist=99999, seed=0), schedule_generator=complex_schedule_generator(), number_of_agents=1, obs_builder_object=SingleAgentNavigationObs()) obs = env.reset() env_renderer = RenderTool(env, gl="PILSVG") env_renderer.render_env(show=True, frames=True, show_observations=True) for step in range(100): action = np.argmax(obs[0]) + 1 obs, all_rewards, done, _ = env.step({0: action}) print("Rewards: ", all_rewards, " [done=", done, "]") env_renderer.render_env(show=True, frames=True, show_observations=True) if sleep_for_animation: time.sleep(0.1) if done["__all__"]: break env_renderer.close_window() if __name__ == '__main__': if 'argv' in globals(): main(argv) else: main(sys.argv[1:])