From fd8f315f09d2d65dc6a514ef3b8505729e9de9c9 Mon Sep 17 00:00:00 2001 From: Giacomo Spigler <spiglerg@gmail.com> Date: Thu, 23 May 2019 22:25:01 +0200 Subject: [PATCH] lint fixes --- examples/custom_observation_example.py | 8 +++++--- examples/custom_railmap_example.py | 3 ++- examples/demo.py | 12 +++++++++--- examples/simple_example_1.py | 5 +---- examples/simple_example_3.py | 4 ++-- examples/training_example.py | 1 - flatland/envs/rail_env.py | 4 ++-- 7 files changed, 21 insertions(+), 16 deletions(-) diff --git a/examples/custom_observation_example.py b/examples/custom_observation_example.py index 03bbe4b7..3c4fc819 100644 --- a/examples/custom_observation_example.py +++ b/examples/custom_observation_example.py @@ -1,14 +1,15 @@ import random -from flatland.envs.generators import random_rail_generator, random_rail_generator +from flatland.envs.generators import random_rail_generator from flatland.envs.rail_env import RailEnv -from flatland.utils.rendertools import RenderTool from flatland.core.env_observation_builder import ObservationBuilder + import numpy as np random.seed(100) np.random.seed(100) + class CustomObs(ObservationBuilder): def __init__(self): self.observation_space = [5] @@ -20,6 +21,7 @@ class CustomObs(ObservationBuilder): observation = handle*np.ones((5,)) return observation + env = RailEnv(width=7, height=7, rail_generator=random_rail_generator(), @@ -29,4 +31,4 @@ env = RailEnv(width=7, # Print the observation vector for each agents obs, all_rewards, done, _ = env.step({0: 0}) for i in range(env.get_num_agents()): - print("Agent ", i,"'s observation: ", obs[i]) + print("Agent ", i, "'s observation: ", obs[i]) diff --git a/examples/custom_railmap_example.py b/examples/custom_railmap_example.py index 71f849de..9d483c0c 100644 --- a/examples/custom_railmap_example.py +++ b/examples/custom_railmap_example.py @@ -1,6 +1,5 @@ import random -from flatland.envs.generators import random_rail_generator, random_rail_generator from flatland.envs.rail_env import RailEnv from flatland.core.transitions import RailEnvTransitions from flatland.core.transition_map import GridTransitionMap @@ -10,6 +9,7 @@ import numpy as np random.seed(100) np.random.seed(100) + def custom_rail_generator(): def generator(width, height, num_agents=0, num_resets=0): rail_trans = RailEnvTransitions() @@ -24,6 +24,7 @@ def custom_rail_generator(): return grid_map, agents_positions, agents_direction, agents_target return generator + env = RailEnv(width=6, height=4, rail_generator=custom_rail_generator(), diff --git a/examples/demo.py b/examples/demo.py index 7e3725bc..74427792 100644 --- a/examples/demo.py +++ b/examples/demo.py @@ -48,7 +48,11 @@ class Scenario_Generator: def generate_complex_scenario(number_of_agents=3): env = RailEnv(width=15, height=15, - rail_generator=complex_rail_generator(nr_start_goal=6, nr_extra=30, min_dist=10, max_dist=99999, seed=0), + rail_generator=complex_rail_generator(nr_start_goal=6, + nr_extra=30, + min_dist=10, + max_dist=99999, + seed=0), number_of_agents=number_of_agents) return env @@ -150,7 +154,9 @@ class Demo: obs = self.env.reset(False, False) for a in range(self.env.get_num_agents()): - data, distance = self.env.obs_builder.split_tree(tree=np.array(obs[a]), num_features_per_node=5, current_depth=0) + data, distance = self.env.obs_builder.split_tree(tree=np.array(obs[a]), + num_features_per_node=5, + current_depth=0) data = norm_obs_clip(data) distance = norm_obs_clip(distance) @@ -174,7 +180,7 @@ class Demo: action_prob[action] += 1 action_dict.update({a: action}) - self.renderer.renderEnv(show=True,action_dict=action_dict) + self.renderer.renderEnv(show=True, action_dict=action_dict) # Environment step next_obs, all_rewards, done, _ = self.env.step(action_dict) diff --git a/examples/simple_example_1.py b/examples/simple_example_1.py index 70d2e73a..7132b533 100644 --- a/examples/simple_example_1.py +++ b/examples/simple_example_1.py @@ -1,10 +1,7 @@ -import random - -from flatland.envs.generators import random_rail_generator, rail_from_manual_specifications_generator +from flatland.envs.generators import rail_from_manual_specifications_generator from flatland.envs.rail_env import RailEnv from flatland.envs.observations import TreeObsForRailEnv from flatland.utils.rendertools import RenderTool -import numpy as np # Example generate a rail given a manual specification, # a map of tuples (cell_type, rotation) diff --git a/examples/simple_example_3.py b/examples/simple_example_3.py index 8aac0ccc..b5283df6 100644 --- a/examples/simple_example_3.py +++ b/examples/simple_example_3.py @@ -1,9 +1,9 @@ import random -from flatland.envs.generators import random_rail_generator, random_rail_generator +from flatland.envs.generators import random_rail_generator from flatland.envs.rail_env import RailEnv from flatland.utils.rendertools import RenderTool -from flatland.core.env_observation_builder import ObservationBuilder +from flatland.core.env_observation_builder import TreeObsForRailEnv import numpy as np random.seed(100) diff --git a/examples/training_example.py b/examples/training_example.py index 5a8c7c00..d6f2c026 100644 --- a/examples/training_example.py +++ b/examples/training_example.py @@ -1,7 +1,6 @@ from flatland.envs.generators import complex_rail_generator from flatland.envs.rail_env import RailEnv import numpy as np -from flatland.utils.rendertools import RenderTool np.random.seed(1) diff --git a/flatland/envs/rail_env.py b/flatland/envs/rail_env.py index be3f4d6b..d4facaf5 100644 --- a/flatland/envs/rail_env.py +++ b/flatland/envs/rail_env.py @@ -91,7 +91,7 @@ class RailEnv(Environment): self.obs_builder._set_env(self) self.action_space = [1] - self.observation_space = self.obs_builder.observation_space # updated on resets? + self.observation_space = self.obs_builder.observation_space # updated on resets? self.actions = [0] * number_of_agents self.rewards = [0] * number_of_agents @@ -163,7 +163,7 @@ class RailEnv(Environment): # Reset the state of the observation builder with the new environment self.obs_builder.reset() - self.observation_space = self.obs_builder.observation_space # <-- change on reset? + self.observation_space = self.obs_builder.observation_space # <-- change on reset? # Return the new observation vectors for each agent return self._get_observations() -- GitLab