diff --git a/examples/training_navigation.py b/examples/training_navigation.py index 554782e3b03803e450a4085098f96bfa4192d84f..b1032511ec00cbf23a4cfe7b8bca4bca370f5180 100644 --- a/examples/training_navigation.py +++ b/examples/training_navigation.py @@ -40,7 +40,7 @@ scores = [] dones_list = [] action_prob = [0]*4 agent = Agent(state_size, action_size, "FC", 0) -#agent.qnetwork_local.load_state_dict(torch.load('../flatland/baselines/Nets/avoid_checkpoint8000.pth')) +agent.qnetwork_local.load_state_dict(torch.load('../flatland/baselines/Nets/avoid_checkpoint9900.pth')) def max_lt(seq, val): """ Return greatest item in seq for which item < val applies. @@ -70,11 +70,11 @@ for trials in range(1, n_trials + 1): # Run episode for step in range(50): #if trials > 114: - #env_renderer.renderEnv(show=True) + env_renderer.renderEnv(show=True) #print(step) # Action for a in range(env.number_of_agents): - action = agent.act(np.array(obs[a]), eps=eps) + action = agent.act(np.array(obs[a]), eps=0) action_prob[action] += 1 action_dict.update({a: action})