diff --git a/agents/dqn_agent.py b/agents/dqn_agent.py new file mode 100644 index 0000000000000000000000000000000000000000..63a1badb7dfcfca0aae0f5b34b8766418bf2cecb --- /dev/null +++ b/agents/dqn_agent.py @@ -0,0 +1,189 @@ +import numpy as np +import random +from collections import namedtuple, deque +import os +from agent.model import QNetwork, QNetwork2 +import torch +import torch.nn.functional as F +import torch.optim as optim +import copy + +BUFFER_SIZE = int(1e5) # replay buffer size +BATCH_SIZE = 512 # minibatch size +GAMMA = 0.99 # discount factor 0.99 +TAU = 1e-3 # for soft update of target parameters +LR = 0.5e-4 # learning rate 5 +UPDATE_EVERY = 10 # how often to update the network +double_dqn = True # If using double dqn algorithm +input_channels = 5 # Number of Input channels + +device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") +device = torch.device("cpu") +print(device) + + +class Agent(): + """Interacts with and learns from the environment.""" + + def __init__(self, state_size, action_size, net_type, seed, double_dqn=True, input_channels=5): + """Initialize an Agent object. + + Params + ====== + state_size (int): dimension of each state + action_size (int): dimension of each action + seed (int): random seed + """ + self.state_size = state_size + self.action_size = action_size + self.seed = random.seed(seed) + self.version = net_type + self.double_dqn = double_dqn + # Q-Network + if self.version == "Conv": + self.qnetwork_local = QNetwork2(state_size, action_size, seed, input_channels).to(device) + self.qnetwork_target = copy.deepcopy(self.qnetwork_local) + else: + self.qnetwork_local = QNetwork(state_size, action_size, seed).to(device) + self.qnetwork_target = copy.deepcopy(self.qnetwork_local) + + self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR) + + # Replay memory + self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed) + # Initialize time step (for updating every UPDATE_EVERY steps) + self.t_step = 0 + + def save(self, filename): + torch.save(self.qnetwork_local.state_dict(), filename + ".local") + torch.save(self.qnetwork_target.state_dict(), filename + ".target") + + def load(self, filename): + if os.path.exists(filename + ".local"): + self.qnetwork_local.load_state_dict(torch.load(filename + ".local")) + if os.path.exists(filename + ".target"): + self.qnetwork_target.load_state_dict(torch.load(filename + ".target")) + + def step(self, state, action, reward, next_state, done): + # Save experience in replay memory + self.memory.add(state, action, reward, next_state, done) + + # Learn every UPDATE_EVERY time steps. + self.t_step = (self.t_step + 1) % UPDATE_EVERY + if self.t_step == 0: + # If enough samples are available in memory, get random subset and learn + if len(self.memory) > BATCH_SIZE: + experiences = self.memory.sample() + self.learn(experiences, GAMMA) + + def act(self, state, eps=0.): + """Returns actions for given state as per current policy. + + Params + ====== + state (array_like): current state + eps (float): epsilon, for epsilon-greedy action selection + """ + state = torch.from_numpy(state).float().unsqueeze(0).to(device) + self.qnetwork_local.eval() + with torch.no_grad(): + action_values = self.qnetwork_local(state) + self.qnetwork_local.train() + + # Epsilon-greedy action selection + if random.random() > eps: + return np.argmax(action_values.cpu().data.numpy()) + else: + return random.choice(np.arange(self.action_size)) + + def learn(self, experiences, gamma): + + """Update value parameters using given batch of experience tuples. + + Params + ====== + experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples + gamma (float): discount factor + """ + states, actions, rewards, next_states, dones = experiences + + # Get expected Q values from local model + Q_expected = self.qnetwork_local(states).gather(1, actions) + + if self.double_dqn: + # Double DQN + q_best_action = self.qnetwork_local(next_states).max(1)[1] + Q_targets_next = self.qnetwork_target(next_states).gather(1, q_best_action.unsqueeze(-1)) + else: + # DQN + Q_targets_next = self.qnetwork_target(next_states).detach().max(1)[0].unsqueeze(-1) + + # Compute Q targets for current states + + Q_targets = rewards + (gamma * Q_targets_next * (1 - dones)) + + # Compute loss + loss = F.mse_loss(Q_expected, Q_targets) + # Minimize the loss + self.optimizer.zero_grad() + loss.backward() + self.optimizer.step() + + # ------------------- update target network ------------------- # + self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU) + + def soft_update(self, local_model, target_model, tau): + """Soft update model parameters. + θ_target = τ*θ_local + (1 - τ)*θ_target + + Params + ====== + local_model (PyTorch model): weights will be copied from + target_model (PyTorch model): weights will be copied to + tau (float): interpolation parameter + """ + for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): + target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data) + + +class ReplayBuffer: + """Fixed-size buffer to store experience tuples.""" + + def __init__(self, action_size, buffer_size, batch_size, seed): + """Initialize a ReplayBuffer object. + + Params + ====== + action_size (int): dimension of each action + buffer_size (int): maximum size of buffer + batch_size (int): size of each training batch + seed (int): random seed + """ + self.action_size = action_size + self.memory = deque(maxlen=buffer_size) + self.batch_size = batch_size + self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"]) + self.seed = random.seed(seed) + + def add(self, state, action, reward, next_state, done): + """Add a new experience to memory.""" + e = self.experience(np.expand_dims(state, 0), action, reward, np.expand_dims(next_state, 0), done) + self.memory.append(e) + + def sample(self): + """Randomly sample a batch of experiences from memory.""" + experiences = random.sample(self.memory, k=self.batch_size) + + states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(device) + actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).long().to(device) + rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(device) + next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to( + device) + dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float().to( + device) + + return (states, actions, rewards, next_states, dones) + + def __len__(self): + """Return the current size of internal memory.""" + return len(self.memory) diff --git a/agents/model.py b/agents/model.py new file mode 100644 index 0000000000000000000000000000000000000000..3b52e9f5ed691aeb3be01e69f04f92d615829b0b --- /dev/null +++ b/agents/model.py @@ -0,0 +1,62 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F + + +class QNetwork(nn.Module): + def __init__(self, state_size, action_size, seed, hidsize1=128, hidsize2=128): + super(QNetwork, self).__init__() + + self.fc1_val = nn.Linear(state_size, hidsize1) + self.fc2_val = nn.Linear(hidsize1, hidsize2) + self.fc3_val = nn.Linear(hidsize2, 1) + + self.fc1_adv = nn.Linear(state_size, hidsize1) + self.fc2_adv = nn.Linear(hidsize1, hidsize2) + self.fc3_adv = nn.Linear(hidsize2, action_size) + + def forward(self, x): + val = F.relu(self.fc1_val(x)) + val = F.relu(self.fc2_val(val)) + val = self.fc3_val(val) + + # advantage calculation + adv = F.relu(self.fc1_adv(x)) + adv = F.relu(self.fc2_adv(adv)) + adv = self.fc3_adv(adv) + return val + adv - adv.mean() + + +class QNetwork2(nn.Module): + def __init__(self, state_size, action_size, seed, input_channels, hidsize1=128, hidsize2=64): + super(QNetwork2, self).__init__() + self.conv1 = nn.Conv2d(input_channels, 16, kernel_size=3, stride=1) + self.bn1 = nn.BatchNorm2d(16) + self.conv2 = nn.Conv2d(16, 32, kernel_size=5, stride=3) + self.bn2 = nn.BatchNorm2d(32) + self.conv3 = nn.Conv2d(32, 64, kernel_size=5, stride=3) + self.bn3 = nn.BatchNorm2d(64) + + self.fc1_val = nn.Linear(6400, hidsize1) + self.fc2_val = nn.Linear(hidsize1, hidsize2) + self.fc3_val = nn.Linear(hidsize2, 1) + + self.fc1_adv = nn.Linear(6400, hidsize1) + self.fc2_adv = nn.Linear(hidsize1, hidsize2) + self.fc3_adv = nn.Linear(hidsize2, action_size) + + def forward(self, x): + x = F.relu(self.conv1(x)) + x = F.relu(self.conv2(x)) + x = F.relu(self.conv3(x)) + + # value function approximation + val = F.relu(self.fc1_val(x.view(x.size(0), -1))) + val = F.relu(self.fc2_val(val)) + val = self.fc3_val(val) + + # advantage calculation + adv = F.relu(self.fc1_adv(x.view(x.size(0), -1))) + adv = F.relu(self.fc2_adv(adv)) + adv = self.fc3_adv(adv) + return val + adv - adv.mean() diff --git a/examples/temporary_example.py b/examples/temporary_example.py index 52927160f467173be152d874d1e5a5f00d8eb474..c015f6140617c31fa020bc9a73dcdb3c9c55cc3e 100644 --- a/examples/temporary_example.py +++ b/examples/temporary_example.py @@ -21,12 +21,12 @@ transition_probability = [1.0, # empty cell - Case 0 """ transition_probability = [1.0, # empty cell - Case 0 1.0, # Case 1 - straight - 1.0, # Case 2 - simple switch - 1.0, # Case 3 - diamond drossing - 1.0, # Case 4 - single slip - 1.0, # Case 5 - double slip - 1.0, # Case 6 - symmetrical - 1.0] # Case 7 - dead end + 0.5, # Case 2 - simple switch + 0.2, # Case 3 - diamond drossing + 0.5, # Case 4 - single slip + 0.1, # Case 5 - double slip + 0.2, # Case 6 - symmetrical + 0.01] # Case 7 - dead end # Example generate a random rail env = RailEnv(width=20,