From 391d7f226a36b7bcab8cdd10e3c4f723fbd8a9b1 Mon Sep 17 00:00:00 2001
From: "Egli Adrian (IT-SCI-API-PFI)" <adrian.egli@sbb.ch>
Date: Fri, 16 Aug 2019 22:15:18 +0200
Subject: [PATCH] feasible solution: OK?

---
 flatland/envs/generators.py                   | 64 ++++++++++++++-----
 ...test_flatland_env_sparse_rail_generator.py |  1 +
 2 files changed, 50 insertions(+), 15 deletions(-)

diff --git a/flatland/envs/generators.py b/flatland/envs/generators.py
index d7173fa3..b17238d5 100644
--- a/flatland/envs/generators.py
+++ b/flatland/envs/generators.py
@@ -673,10 +673,16 @@ def realistic_rail_generator(nr_start_goal=1,  seed=0):
         max_n_track_seg = np.random.choice([3, 4, 5])
         x_offsets = np.arange(0, height, max_n_track_seg).astype(int)
 
-        agents_positions = []
+        agents_positions_forward = []
+        agents_directions_forward = []
+        agents_positions_backward = []
+        agents_directions_backward = []
         agents_targets = []
-        agents_directions = []
 
+        idx_forward = []
+        idx_backward = []
+
+        idx_target=0
         for off_set_loop in range(len(x_offsets)):
             off_set = x_offsets[off_set_loop]
             # second track
@@ -752,24 +758,52 @@ def realistic_rail_generator(nr_start_goal=1,  seed=0):
                         make_switch_w_e(width, height, grid_map, c)
 
                     add_pos = (int((start[0] + goal[0]) / 2), int((start[1] + goal[1]) / 2))
-                    agents_positions.append(add_pos)
-                    agents_directions.append([1,3][nbr_track_loop % 2])
-                    add_pos = (int((start[0] + goal[0]) / 2), int((2*start[1] + goal[1]) / 3))
+                    if nbr_track_loop % 2 == 0:
+                        agents_positions_forward.append(add_pos)
+                        agents_directions_forward.append(([1, 3][off_set_loop % 2]))
+                        idx_forward.append(idx_target)
+                    else:
+                        agents_positions_backward.append(add_pos)
+                        agents_directions_backward.append(([1, 3][off_set_loop % 2]))
+                        idx_backward.append(idx_target)
+
+                    add_pos = (int((start[0] + goal[0]) / 2), int((2*start[1] + goal[1]) / 3),idx_target)
                     agents_targets.append(add_pos)
+                    idx_target+=1
 
         agents_position = []
         agents_target = []
         agents_direction = []
-        filter_agent = np.random.choice(np.arange(len(agents_positions)),min(len(agents_positions),num_agents),False)
-        for f in filter_agent:
-            d = agents_positions[f]
-            agents_position.append(d)
-            d = agents_directions[f]
-            agents_direction.append(d)
-        filter_target = np.random.choice(np.arange(len(agents_targets)),min(len(agents_targets),num_agents),False)
-        for f in filter_target:
-            d = agents_targets[f]
-            agents_target.append(d)
+
+        for a in range(min(len(agents_targets),num_agents)):
+            t = np.random.choice(range(len(agents_targets)))
+            d = agents_targets[t]
+            agents_targets.pop(t)
+            if d[2] < idx_target / 2:
+                if len(idx_backward) > 0:
+                    agents_target.append((d[0], d[1]))
+                    sel = np.random.choice(range(len(idx_backward)))
+                    # backward
+                    p = agents_positions_backward[sel]
+                    d = agents_directions_backward[sel]
+                    agents_positions_backward.pop(sel)
+                    agents_directions_backward.pop(sel)
+                    idx_backward.pop(sel)
+                    agents_position.append((p[0],p[1]))
+                    agents_direction.append(d)
+            else:
+                if len(idx_forward) > 0:
+                    agents_target.append((d[0], d[1]))
+                    sel = np.random.choice(range(len(idx_forward)))
+                    # forward
+                    p = agents_positions_forward[sel]
+                    d = agents_directions_forward[sel]
+                    agents_positions_forward.pop(sel)
+                    agents_directions_forward.pop(sel)
+                    idx_forward.pop(sel)
+                    agents_position.append((p[0],p[1]))
+                    agents_direction.append(d)
+
 
         return grid_map, agents_position, agents_direction, agents_target, [1.0] * len(agents_position)
 
diff --git a/tests/test_flatland_env_sparse_rail_generator.py b/tests/test_flatland_env_sparse_rail_generator.py
index 3c1bc18b..2619dbca 100644
--- a/tests/test_flatland_env_sparse_rail_generator.py
+++ b/tests/test_flatland_env_sparse_rail_generator.py
@@ -33,3 +33,4 @@ def test_sparse_rail_generator():
     env_renderer = RenderTool(env, gl="PILSVG", )
     env_renderer.render_env(show=True, show_observations=True, show_predictions=False)
     time.sleep(2)
+
-- 
GitLab