From 2aff85d5dc9cfa811e932bbfd302db64bf0766e3 Mon Sep 17 00:00:00 2001 From: mlerik <baerenjesus@gmail.com> Date: Tue, 30 Jul 2019 19:54:07 +0000 Subject: [PATCH] Update intro_observationbuilder.rst --- docs/intro_observationbuilder.rst | 122 +++++++++++++++++++++++++++++- 1 file changed, 120 insertions(+), 2 deletions(-) diff --git a/docs/intro_observationbuilder.rst b/docs/intro_observationbuilder.rst index 65d0b6a4..efa3788a 100644 --- a/docs/intro_observationbuilder.rst +++ b/docs/intro_observationbuilder.rst @@ -84,7 +84,8 @@ Note that this simple strategy fails when multiple agents are present, as each a """ def __init__(self): super().__init__(max_depth=0) - # We set max_depth=0 in because we only need to look at the current position of the agent to decide what direction is shortest. + # We set max_depth=0 in because we only need to look at the current + # position of the agent to decide what direction is shortest. self.observation_space = [3] def reset(self): @@ -120,7 +121,8 @@ Note that this simple strategy fails when multiple agents are present, as each a env = RailEnv(width=7, height=7, - rail_generator=complex_rail_generator(nr_start_goal=10, nr_extra=1, min_dist=8, max_dist=99999, seed=0), + rail_generator=complex_rail_generator(nr_start_goal=10, nr_extra=1, \ + min_dist=8, max_dist=99999, seed=0), number_of_agents=2, obs_builder_object=SingleAgentNavigationObs()) @@ -154,3 +156,119 @@ navigation to target, and shows the path taken as an animation. The code examples above appear in the example file `custom_observation_example.py <https://gitlab.aicrowd.com/flatland/flatland/blob/master/examples/custom_observation_example.py>`_. You can run it using :code:`python examples/custom_observation_example.py` from the root folder of the flatland repo. The two examples are run one after the other. +Example 3 & 4 : Using custom predictors and rendering observation +-------------- + +.. code-block:: python + +class ObservePredictions(TreeObsForRailEnv): + """ + We use the provided ShortestPathPredictor to illustrate the usage of predictors in your custom observation. + + We derive our observation builder from TreeObsForRailEnv, to exploit the existing implementation to compute + the minimum distances from each grid node to each agent's target. + + This is necessary so that we can pass the distance map to the ShortestPathPredictor + + Here we also want to highlight how you can visualize your observation + """ + + def __init__(self, predictor): + super().__init__(max_depth=0) + self.observation_space = [10] + self.predictor = predictor + + def reset(self): + # Recompute the distance map, if the environment has changed. + super().reset() + + def get_many(self, handles=None): + ''' + Because we do not want to call the predictor seperately for every agent we implement the get_many function + Here we can call the predictor just ones for all the agents and use the predictions to generate our observations + :param handles: + :return: + ''' + + self.predictions = self.predictor.get(custom_args={'distance_map': self.distance_map}) + + self.predicted_pos = {} + for t in range(len(self.predictions[0])): + pos_list = [] + for a in handles: + pos_list.append(self.predictions[a][t][1:3]) + # We transform (x,y) coodrinates to a single integer number for simpler comparison + self.predicted_pos.update({t: coordinate_to_position(self.env.width, pos_list)}) + observations = {} + + # Collect all the different observation for all the agents + for h in handles: + observations[h] = self.get(h) + return observations + + def get(self, handle): + ''' + Lets write a simple observation which just indicates whether or not the own predicted path + overlaps with other predicted paths at any time. This is useless for the task of navigation but might + help when looking for conflicts. A more complex implementation can be found in the TreeObsForRailEnv class + + Each agent recieves an observation of length 10, where each element represents a prediction step and its value + is: + - 0 if no overlap is happening + - 1 where n i the number of other paths crossing the predicted cell + + :param handle: handeled as an index of an agent + :return: Observation of handle + ''' + + observation = np.zeros(10) + + # We are going to track what cells where considered while building the obervation and make them accesible + # For rendering + + visited = set() + for _idx in range(10): + # Check if any of the other prediction overlap with agents own predictions + x_coord = self.predictions[handle][_idx][1] + y_coord = self.predictions[handle][_idx][2] + + # We add every observed cell to the observation rendering + visited.add((x_coord, y_coord)) + if self.predicted_pos[_idx][handle] in np.delete(self.predicted_pos[_idx], handle, 0): + # We detect if another agent is predicting to pass through the same cell at the same predicted time + observation[handle] = 1 + + # This variable will be access by the renderer to visualize the observation + self.env.dev_obs_dict[handle] = visited + + return observation + + +# Initiate the Predictor +CustomPredictor = ShortestPathPredictorForRailEnv(10) + +# Pass the Predictor to the observation builder +CustomObsBuilder = ObservePredictions(CustomPredictor) + +# Initiate Environment +env = RailEnv(width=10, + height=10, + rail_generator=complex_rail_generator(nr_start_goal=5, nr_extra=1, min_dist=8, max_dist=99999, seed=0), + number_of_agents=3, + obs_builder_object=CustomObsBuilder) + +obs = env.reset() +env_renderer = RenderTool(env, gl="PILSVG") + +# We render the initial step and show the obsered cells as colored boxes +env_renderer.render_env(show=True, frames=True, show_observations=True, show_predictions=False) + +action_dict = {} +for step in range(100): + for a in range(env.get_num_agents()): + action = np.random.randint(0, 5) + action_dict[a] = action + obs, all_rewards, done, _ = env.step(action_dict) + print("Rewards: ", all_rewards, " [done=", done, "]") + env_renderer.render_env(show=True, frames=True, show_observations=True, show_predictions=False) + time.sleep(0.5) -- GitLab