import copy import os import random from collections import namedtuple, deque, Iterable import numpy as np import torch import torch.nn.functional as F import torch.optim as optim from torch_training.model import QNetwork, QNetwork2 BUFFER_SIZE = int(1e5) # replay buffer size BATCH_SIZE = 512 # minibatch size GAMMA = 0.99 # discount factor 0.99 TAU = 1e-3 # for soft update of target parameters LR = 0.5e-4 # learning rate 5 UPDATE_EVERY = 10 # how often to update the network double_dqn = True # If using double dqn algorithm input_channels = 5 # Number of Input channels device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") device = torch.device("cpu") print(device) class Agent: """Interacts with and learns from the environment.""" def __init__(self, state_size, action_size, net_type, seed, double_dqn=True, input_channels=5): """Initialize an Agent object. Params ====== state_size (int): dimension of each state action_size (int): dimension of each action seed (int): random seed """ self.state_size = state_size self.action_size = action_size self.seed = random.seed(seed) self.version = net_type self.double_dqn = double_dqn # Q-Network if self.version == "Conv": self.qnetwork_local = QNetwork2(state_size, action_size, seed, input_channels).to(device) self.qnetwork_target = copy.deepcopy(self.qnetwork_local) else: self.qnetwork_local = QNetwork(state_size, action_size, seed).to(device) self.qnetwork_target = copy.deepcopy(self.qnetwork_local) self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR) # Replay memory self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed) # Initialize time step (for updating every UPDATE_EVERY steps) self.t_step = 0 def save(self, filename): torch.save(self.qnetwork_local.state_dict(), filename + ".local") torch.save(self.qnetwork_target.state_dict(), filename + ".target") def load(self, filename): if os.path.exists(filename + ".local"): self.qnetwork_local.load_state_dict(torch.load(filename + ".local")) if os.path.exists(filename + ".target"): self.qnetwork_target.load_state_dict(torch.load(filename + ".target")) def step(self, state, action, reward, next_state, done, train=True): # Save experience in replay memory self.memory.add(state, action, reward, next_state, done) # Learn every UPDATE_EVERY time steps. self.t_step = (self.t_step + 1) % UPDATE_EVERY if self.t_step == 0: # If enough samples are available in memory, get random subset and learn if len(self.memory) > BATCH_SIZE: experiences = self.memory.sample() if train: self.learn(experiences, GAMMA) def act(self, state, eps=0.): """Returns actions for given state as per current policy. Params ====== state (array_like): current state eps (float): epsilon, for epsilon-greedy action selection """ state = torch.from_numpy(state).float().unsqueeze(0).to(device) self.qnetwork_local.eval() with torch.no_grad(): action_values = self.qnetwork_local(state) self.qnetwork_local.train() # Epsilon-greedy action selection if random.random() > eps: return np.argmax(action_values.cpu().data.numpy()) else: return random.choice(np.arange(self.action_size)) def learn(self, experiences, gamma): """Update value parameters using given batch of experience tuples. Params ====== experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples gamma (float): discount factor """ states, actions, rewards, next_states, dones = experiences # Get expected Q values from local model Q_expected = self.qnetwork_local(states).gather(1, actions) if self.double_dqn: # Double DQN q_best_action = self.qnetwork_local(next_states).max(1)[1] Q_targets_next = self.qnetwork_target(next_states).gather(1, q_best_action.unsqueeze(-1)) else: # DQN Q_targets_next = self.qnetwork_target(next_states).detach().max(1)[0].unsqueeze(-1) # Compute Q targets for current states Q_targets = rewards + (gamma * Q_targets_next * (1 - dones)) # Compute loss loss = F.mse_loss(Q_expected, Q_targets) # Minimize the loss self.optimizer.zero_grad() loss.backward() self.optimizer.step() # ------------------- update target network ------------------- # self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU) def soft_update(self, local_model, target_model, tau): """Soft update model parameters. θ_target = τ*θ_local + (1 - τ)*θ_target Params ====== local_model (PyTorch model): weights will be copied from target_model (PyTorch model): weights will be copied to tau (float): interpolation parameter """ for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data) class ReplayBuffer: """Fixed-size buffer to store experience tuples.""" def __init__(self, action_size, buffer_size, batch_size, seed): """Initialize a ReplayBuffer object. Params ====== action_size (int): dimension of each action buffer_size (int): maximum size of buffer batch_size (int): size of each training batch seed (int): random seed """ self.action_size = action_size self.memory = deque(maxlen=buffer_size) self.batch_size = batch_size self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"]) self.seed = random.seed(seed) def add(self, state, action, reward, next_state, done): """Add a new experience to memory.""" e = self.experience(np.expand_dims(state, 0), action, reward, np.expand_dims(next_state, 0), done) self.memory.append(e) def sample(self): """Randomly sample a batch of experiences from memory.""" experiences = random.sample(self.memory, k=self.batch_size) states = torch.from_numpy(self.__v_stack_impr([e.state for e in experiences if e is not None])) \ .float().to(device) actions = torch.from_numpy(self.__v_stack_impr([e.action for e in experiences if e is not None])) \ .long().to(device) rewards = torch.from_numpy(self.__v_stack_impr([e.reward for e in experiences if e is not None])) \ .float().to(device) next_states = torch.from_numpy(self.__v_stack_impr([e.next_state for e in experiences if e is not None])) \ .float().to(device) dones = torch.from_numpy(self.__v_stack_impr([e.done for e in experiences if e is not None]).astype(np.uint8)) \ .float().to(device) return (states, actions, rewards, next_states, dones) def __len__(self): """Return the current size of internal memory.""" return len(self.memory) def __v_stack_impr(self, states): sub_dim = len(states[0][0]) if isinstance(states[0], Iterable) else 1 np_states = np.reshape(np.array(states), (len(states), sub_dim)) return np_states