import os import gin import gym from importlib_resources import path # Import PPO trainer: we can replace these imports by any other trainer from RLLib. from ray.rllib.agents.ppo.ppo import DEFAULT_CONFIG from ray.rllib.agents.ppo.ppo import PPOTrainer as Trainer from ray.rllib.agents.ppo.ppo_policy_graph import PPOPolicyGraph as PolicyGraph from ray.rllib.models import ModelCatalog from flatland.envs.predictions import DummyPredictorForRailEnv gin.external_configurable(DummyPredictorForRailEnv) import ray from ray.tune.logger import UnifiedLogger from ray.tune.logger import pretty_print from RailEnvRLLibWrapper import RailEnvRLLibWrapper from custom_models import ConvModelGlobalObs from custom_preprocessors import CustomPreprocessor, ConvModelPreprocessor import tempfile from ray import tune from ray.rllib.utils.seed import seed as set_seed from flatland.envs.observations import TreeObsForRailEnv, GlobalObsForRailEnv, \ LocalObsForRailEnv, GlobalObsForRailEnvDirectionDependent gin.external_configurable(TreeObsForRailEnv) gin.external_configurable(GlobalObsForRailEnv) gin.external_configurable(LocalObsForRailEnv) gin.external_configurable(GlobalObsForRailEnvDirectionDependent) from ray.rllib.models.preprocessors import TupleFlatteningPreprocessor ModelCatalog.register_custom_preprocessor("tree_obs_prep", CustomPreprocessor) ModelCatalog.register_custom_preprocessor("global_obs_prep", TupleFlatteningPreprocessor) ModelCatalog.register_custom_preprocessor("conv_obs_prep", ConvModelPreprocessor) ModelCatalog.register_custom_model("conv_model", ConvModelGlobalObs) ray.init() # object_store_memory=150000000000, redis_max_memory=30000000000) __file_dirname__ = os.path.dirname(os.path.realpath(__file__)) def train(config, reporter): print('Init Env') set_seed(config['seed'], config['seed'], config['seed']) # Example configuration to generate a random rail env_config = {"width": config['map_width'], "height": config['map_height'], "rail_generator": config["rail_generator"], "nr_extra": config["nr_extra"], "number_of_agents": config['n_agents'], "seed": config['seed'], "obs_builder": config['obs_builder'], "predictor": config["predictor"], "step_memory": config["step_memory"]} # Observation space and action space definitions if isinstance(config["obs_builder"], TreeObsForRailEnv): if config['predictor'] is None: obs_space = gym.spaces.Tuple( (gym.spaces.Box(low=-float('inf'), high=float('inf'), shape=(147,)),) * config['step_memory']) else: obs_space = gym.spaces.Tuple((gym.spaces.Box(low=-float('inf'), high=float('inf'), shape=(147,)), gym.spaces.Box(low=0, high=1, shape=(config['n_agents'],)), gym.spaces.Box(low=0, high=1, shape=(20, config['n_agents'])),) * config[ 'step_memory']) preprocessor = "tree_obs_prep" elif isinstance(config["obs_builder"], GlobalObsForRailEnv): obs_space = gym.spaces.Tuple(( gym.spaces.Box(low=0, high=1, shape=(config['map_height'], config['map_width'], 16)), gym.spaces.Box(low=0, high=1, shape=(config['map_height'], config['map_width'], 8)), gym.spaces.Box(low=0, high=1, shape=(config['map_height'], config['map_width'], 2)))) if config['conv_model']: preprocessor = "conv_obs_prep" else: preprocessor = "global_obs_prep" elif isinstance(config["obs_builder"], GlobalObsForRailEnvDirectionDependent): obs_space = gym.spaces.Tuple(( gym.spaces.Box(low=0, high=1, shape=(config['map_height'], config['map_width'], 16)), gym.spaces.Box(low=0, high=1, shape=(config['map_height'], config['map_width'], 5)), gym.spaces.Box(low=0, high=1, shape=(config['map_height'], config['map_width'], 2)))) if config['conv_model']: preprocessor = "conv_obs_prep" else: preprocessor = "global_obs_prep" elif isinstance(config["obs_builder"], LocalObsForRailEnv): view_radius = config["obs_builder"].view_radius obs_space = gym.spaces.Tuple(( gym.spaces.Box(low=0, high=1, shape=(2 * view_radius + 1, 2 * view_radius + 1, 16)), gym.spaces.Box(low=0, high=1, shape=(2 * view_radius + 1, 2 * view_radius + 1, 2)), gym.spaces.Box(low=0, high=1, shape=(2 * view_radius + 1, 2 * view_radius + 1, 4)), gym.spaces.Box(low=0, high=1, shape=(4,)))) preprocessor = "global_obs_prep" else: raise ValueError("Undefined observation space") act_space = gym.spaces.Discrete(5) # Dict with the different policies to train policy_graphs = { config['policy_folder_name'].format(**locals()): (PolicyGraph, obs_space, act_space, {}) } def policy_mapping_fn(agent_id): return config['policy_folder_name'].format(**locals()) # Trainer configuration trainer_config = DEFAULT_CONFIG.copy() if config['conv_model']: trainer_config['model'] = {"custom_model": "conv_model", "custom_preprocessor": preprocessor} else: trainer_config['model'] = {"fcnet_hiddens": config['hidden_sizes'], "custom_preprocessor": preprocessor} trainer_config['multiagent'] = {"policy_graphs": policy_graphs, "policy_mapping_fn": policy_mapping_fn, "policies_to_train": list(policy_graphs.keys())} trainer_config["horizon"] = config['horizon'] trainer_config["num_workers"] = 0 trainer_config["num_cpus_per_worker"] = 4 trainer_config["num_gpus"] = 0.2 trainer_config["num_gpus_per_worker"] = 0.2 trainer_config["num_cpus_for_driver"] = 1 trainer_config["num_envs_per_worker"] = 1 trainer_config['entropy_coeff'] = config['entropy_coeff'] trainer_config["env_config"] = env_config trainer_config["batch_mode"] = "complete_episodes" trainer_config['simple_optimizer'] = False trainer_config['postprocess_inputs'] = True trainer_config['log_level'] = 'WARN' trainer_config['num_sgd_iter'] = 10 trainer_config['clip_param'] = 0.2 trainer_config['kl_coeff'] = config['kl_coeff'] trainer_config['lambda'] = config['lambda_gae'] def logger_creator(conf): """Creates a Unified logger with a default logdir prefix containing the agent name and the env id """ logdir = config['policy_folder_name'].format(**locals()) logdir = tempfile.mkdtemp( prefix=logdir, dir=config['local_dir']) return UnifiedLogger(conf, logdir, None) logger = logger_creator trainer = Trainer(env=RailEnvRLLibWrapper, config=trainer_config, logger_creator=logger) for i in range(100000 + 2): print("== Iteration", i, "==") print(pretty_print(trainer.train())) if i % config['save_every'] == 0: checkpoint = trainer.save() print("checkpoint saved at", checkpoint) reporter(num_iterations_trained=trainer._iteration) @gin.configurable def run_experiment(name, num_iterations, n_agents, hidden_sizes, save_every, map_width, map_height, horizon, policy_folder_name, local_dir, obs_builder, entropy_coeff, seed, conv_model, rail_generator, nr_extra, kl_coeff, lambda_gae, predictor, step_memory): tune.run( train, name=name, stop={"num_iterations_trained": num_iterations}, config={"n_agents": n_agents, "hidden_sizes": hidden_sizes, # Array containing the sizes of the network layers "save_every": save_every, "map_width": map_width, "map_height": map_height, "local_dir": local_dir, "horizon": horizon, # Max number of time steps 'policy_folder_name': policy_folder_name, "obs_builder": obs_builder, "entropy_coeff": entropy_coeff, "seed": seed, "conv_model": conv_model, "rail_generator": rail_generator, "nr_extra": nr_extra, "kl_coeff": kl_coeff, "lambda_gae": lambda_gae, "predictor": predictor, "step_memory": step_memory }, resources_per_trial={ "cpu": 5, "gpu": 0.2 }, verbose=2, local_dir=local_dir ) if __name__ == '__main__': gin.external_configurable(tune.grid_search) with path('RLLib_training.experiment_configs.experiment_agent_memory', 'config.gin') as f: gin.parse_config_file(f) dir = os.path.join(__file_dirname__, 'experiment_configs', 'experiment_agent_memory') run_experiment(local_dir=dir)