import random from collections import deque import numpy as np import torch from importlib_resources import path import torch_training.Nets from flatland.envs.agent_generators import complex_rail_generator_agents_placer from flatland.envs.generators import complex_rail_generator from flatland.envs.observations import TreeObsForRailEnv from flatland.envs.predictions import ShortestPathPredictorForRailEnv from flatland.envs.rail_env import RailEnv from flatland.utils.rendertools import RenderTool from torch_training.dueling_double_dqn import Agent from utils.observation_utils import norm_obs_clip, split_tree random.seed(1) np.random.seed(1) """ file_name = "./railway/complex_scene.pkl" env = RailEnv(width=10, height=20, rail_generator=rail_from_file(file_name), obs_builder_object=TreeObsForRailEnv(max_depth=3, predictor=ShortestPathPredictorForRailEnv())) x_dim = env.width y_dim = env.height """ x_dim = np.random.randint(8, 20) y_dim = np.random.randint(8, 20) n_agents = np.random.randint(3, 8) n_goals = n_agents + np.random.randint(0, 3) min_dist = int(0.75 * min(x_dim, y_dim)) env = RailEnv(width=x_dim, height=y_dim, rail_generator=complex_rail_generator(nr_start_goal=n_goals, nr_extra=5, min_dist=min_dist, max_dist=99999, seed=0), agent_generator=complex_rail_generator_agents_placer(), obs_builder_object=TreeObsForRailEnv(max_depth=3, predictor=ShortestPathPredictorForRailEnv()), number_of_agents=n_agents) env.reset(True, True) observation_helper = TreeObsForRailEnv(max_depth=3, predictor=ShortestPathPredictorForRailEnv()) env_renderer = RenderTool(env, gl="PILSVG", ) num_features_per_node = env.obs_builder.observation_dim handle = env.get_agent_handles() features_per_node = 9 state_size = features_per_node * 85 * 2 action_size = 5 # We set the number of episodes we would like to train on if 'n_trials' not in locals(): n_trials = 60000 max_steps = int(3 * (env.height + env.width)) eps = 1. eps_end = 0.005 eps_decay = 0.9995 action_dict = dict() final_action_dict = dict() scores_window = deque(maxlen=100) done_window = deque(maxlen=100) time_obs = deque(maxlen=2) scores = [] dones_list = [] action_prob = [0] * action_size agent_obs = [None] * env.get_num_agents() agent_next_obs = [None] * env.get_num_agents() agent = Agent(state_size, action_size, "FC", 0) with path(torch_training.Nets, "avoid_checkpoint49700.pth") as file_in: agent.qnetwork_local.load_state_dict(torch.load(file_in)) record_images = False frame_step = 0 for trials in range(1, n_trials + 1): # Reset environment obs = env.reset(True, True) env_renderer.set_new_rail() obs_original = obs.copy() final_obs = obs.copy() final_obs_next = obs.copy() for a in range(env.get_num_agents()): data, distance, agent_data = split_tree(tree=np.array(obs[a]), num_features_per_node=num_features_per_node, current_depth=0) data = norm_obs_clip(data) distance = norm_obs_clip(distance) agent_data = np.clip(agent_data, -1, 1) obs[a] = np.concatenate((np.concatenate((data, distance)), agent_data)) agent_data = env.agents[a] speed = 1 # np.random.randint(1,5) agent_data.speed_data['speed'] = 1. / speed for i in range(2): time_obs.append(obs) # env.obs_builder.util_print_obs_subtree(tree=obs[0], num_elements_per_node=5) for a in range(env.get_num_agents()): agent_obs[a] = np.concatenate((time_obs[0][a], time_obs[1][a])) # Run episode for step in range(max_steps): env_renderer.render_env(show=True, show_observations=False, show_predictions=True) if record_images: env_renderer.gl.saveImage("./Images/flatland_frame_{:04d}.bmp".format(frame_step)) frame_step += 1 # Action for a in range(env.get_num_agents()): # action = agent.act(np.array(obs[a]), eps=eps) action = agent.act(agent_obs[a], eps=0) action_dict.update({a: action}) # Environment step next_obs, all_rewards, done, _ = env.step(action_dict) # print(all_rewards,action) obs_original = next_obs.copy() for a in range(env.get_num_agents()): data, distance, agent_data = split_tree(tree=np.array(next_obs[a]), num_features_per_node=num_features_per_node, current_depth=0) data = norm_obs_clip(data) distance = norm_obs_clip(distance) agent_data = np.clip(agent_data, -1, 1) next_obs[a] = np.concatenate((np.concatenate((data, distance)), agent_data)) time_obs.append(next_obs) for a in range(env.get_num_agents()): agent_next_obs[a] = np.concatenate((time_obs[0][a], time_obs[1][a])) agent_obs = agent_next_obs.copy() if done['__all__']: break