# Import packages for plotting and system import getopt import random import sys from collections import deque import matplotlib.pyplot as plt import numpy as np import torch # Import Flatland/ Observations and Predictors from flatland.envs.generators import complex_rail_generator from flatland.envs.observations import TreeObsForRailEnv from flatland.envs.predictions import ShortestPathPredictorForRailEnv from flatland.envs.rail_env import RailEnv from importlib_resources import path # Import Torch and utility functions to normalize observation import torch_training.Nets from torch_training.dueling_double_dqn import Agent from utils.observation_utils import norm_obs_clip, split_tree def main(argv): try: opts, args = getopt.getopt(argv, "n:", ["n_episodes="]) except getopt.GetoptError: print('training_navigation.py -n <n_episodes>') sys.exit(2) for opt, arg in opts: if opt in ('-n', '--n_episodes'): n_episodes = int(arg) ## Initialize the random random.seed(1) np.random.seed(1) # Initialize a random map with a random number of agents x_dim = np.random.randint(8, 20) y_dim = np.random.randint(8, 20) n_agents = np.random.randint(3, 8) n_goals = n_agents + np.random.randint(0, 3) min_dist = int(0.75 * min(x_dim, y_dim)) tree_depth = 3 print("main2") # Get an observation builder and predictor # The predictor will always predict the shortest path from the current location of the agent. # This is used to warn for potential conflicts --> Should be enhanced to get better performance! predictor = ShortestPathPredictorForRailEnv() observation_helper = TreeObsForRailEnv(max_depth=tree_depth, predictor=predictor) env = RailEnv(width=x_dim, height=y_dim, rail_generator=complex_rail_generator(nr_start_goal=n_goals, nr_extra=5, min_dist=min_dist, max_dist=99999, seed=0), obs_builder_object=observation_helper, number_of_agents=n_agents) env.reset(True, True) handle = env.get_agent_handles() num_features_per_node = env.obs_builder.observation_dim nr_nodes = 0 for i in range(tree_depth + 1): nr_nodes += np.power(4, i) state_size = num_features_per_node * nr_nodes action_size = 5 # We set the number of episodes we would like to train on if 'n_episodes' not in locals(): n_episodes = 60000 # Set max number of steps per episode as well as other training relevant parameter max_steps = int(3 * (env.height + env.width)) eps = 1. eps_end = 0.005 eps_decay = 0.9995 action_dict = dict() final_action_dict = dict() scores_window = deque(maxlen=100) done_window = deque(maxlen=100) scores = [] dones_list = [] action_prob = [0] * action_size agent_obs = [None] * env.get_num_agents() agent_next_obs = [None] * env.get_num_agents() observation_radius = 10 # Initialize the agent agent = Agent(state_size, action_size, "FC", 0) # Here you can pre-load an agent if False: with path(torch_training.Nets, "avoid_checkpoint30000.pth") as file_in: agent.qnetwork_local.load_state_dict(torch.load(file_in)) # Do training over n_episodes for episodes in range(1, n_episodes + 1): """ Training Curriculum: In order to get good generalization we change the number of agents and the size of the levels every 50 episodes. """ if episodes % 50 == 0: x_dim = np.random.randint(8, 20) y_dim = np.random.randint(8, 20) n_agents = np.random.randint(3, 8) n_goals = n_agents + np.random.randint(0, 3) min_dist = int(0.75 * min(x_dim, y_dim)) env = RailEnv(width=x_dim, height=y_dim, rail_generator=complex_rail_generator(nr_start_goal=n_goals, nr_extra=5, min_dist=min_dist, max_dist=99999, seed=0), obs_builder_object=observation_helper, number_of_agents=n_agents) # Adjust the parameters according to the new env. max_steps = int(3 * (env.height + env.width)) agent_obs = [None] * env.get_num_agents() agent_next_obs = [None] * env.get_num_agents() # Reset environment obs = env.reset(True, True) # Setup placeholder for finals observation of a single agent. This is necessary because agents terminate at # different times during an episode final_obs = agent_obs.copy() final_obs_next = agent_next_obs.copy() # Build agent specific observations for a in range(env.get_num_agents()): data, distance, agent_data = split_tree(tree=np.array(obs[a]), num_features_per_node=num_features_per_node, current_depth=0) data = norm_obs_clip(data, fixed_radius=observation_radius) distance = norm_obs_clip(distance) agent_data = np.clip(agent_data, -1, 1) agent_obs[a] = np.concatenate((np.concatenate((data, distance)), agent_data)) score = 0 env_done = 0 # Run episode for step in range(max_steps): # Action for a in range(env.get_num_agents()): action = agent.act(agent_obs[a], eps=eps) action_prob[action] += 1 action_dict.update({a: action}) # Environment step next_obs, all_rewards, done, _ = env.step(action_dict) # Build agent specific observations and normalize for a in range(env.get_num_agents()): data, distance, agent_data = split_tree(tree=np.array(next_obs[a]), num_features_per_node=num_features_per_node, current_depth=0) data = norm_obs_clip(data, fixed_radius=observation_radius) distance = norm_obs_clip(distance) agent_data = np.clip(agent_data, -1, 1) agent_next_obs[a] = np.concatenate((np.concatenate((data, distance)), agent_data)) # Update replay buffer and train agent for a in range(env.get_num_agents()): if done[a]: final_obs[a] = agent_obs[a].copy() final_obs_next[a] = agent_next_obs[a].copy() final_action_dict.update({a: action_dict[a]}) if not done[a]: agent.step(agent_obs[a], action_dict[a], all_rewards[a], agent_next_obs[a], done[a]) score += all_rewards[a] / env.get_num_agents() # Copy observation agent_obs = agent_next_obs.copy() if done['__all__']: env_done = 1 for a in range(env.get_num_agents()): agent.step(final_obs[a], final_action_dict[a], all_rewards[a], final_obs_next[a], done[a]) break # Epsilon decay eps = max(eps_end, eps_decay * eps) # decrease epsilon # Collection information about training done_window.append(env_done) scores_window.append(score / max_steps) # save most recent score scores.append(np.mean(scores_window)) dones_list.append((np.mean(done_window))) print( '\rTraining {} Agents on ({},{}).\t Episode {}\t Average Score: {:.3f}\tDones: {:.2f}%\tEpsilon: {:.2f} \t Action Probabilities: \t {}'.format( env.get_num_agents(), x_dim, y_dim, episodes, np.mean(scores_window), 100 * np.mean(done_window), eps, action_prob / np.sum(action_prob)), end=" ") if episodes % 100 == 0: print( '\rTraining {} Agents.\t Episode {}\t Average Score: {:.3f}\tDones: {:.2f}%\tEpsilon: {:.2f} \t Action Probabilities: \t {}'.format( env.get_num_agents(), episodes, np.mean(scores_window), 100 * np.mean(done_window), eps, action_prob / np.sum(action_prob))) torch.save(agent.qnetwork_local.state_dict(), './Nets/avoid_checkpoint' + str(episodes) + '.pth') action_prob = [1] * action_size plt.plot(scores) plt.show() if __name__ == '__main__': main(sys.argv[1:])