import random from collections import deque import numpy as np import torch from importlib_resources import path from observation_builders.observations import TreeObsForRailEnv from predictors.predictions import ShortestPathPredictorForRailEnv import torch_training.Nets from flatland.envs.rail_env import RailEnv from flatland.envs.rail_generators import rail_from_file, sparse_rail_generator from flatland.envs.schedule_generators import schedule_from_file, sparse_schedule_generator from flatland.utils.rendertools import RenderTool from torch_training.dueling_double_dqn import Agent from utils.observation_utils import normalize_observation random.seed(3) np.random.seed(2) # Parameters for the Environment x_dim = 20 y_dim = 20 n_agents = 5 tree_depth = 2 # Use a the malfunction generator to break agents from time to time stochastic_data = {'prop_malfunction': 0.1, # Percentage of defective agents 'malfunction_rate': 30, # Rate of malfunction occurence 'min_duration': 3, # Minimal duration of malfunction 'max_duration': 20 # Max duration of malfunction } # Custom observation builder predictor = ShortestPathPredictorForRailEnv() observation_helper = TreeObsForRailEnv(max_depth=tree_depth, predictor=predictor) # Different agent types (trains) with different speeds. speed_ration_map = {1.: 0.25, # Fast passenger train 1. / 2.: 0.25, # Fast freight train 1. / 3.: 0.25, # Slow commuter train 1. / 4.: 0.25} # Slow freight train env = RailEnv(width=x_dim, height=y_dim, rail_generator=sparse_rail_generator(num_cities=5, # Number of cities in map (where train stations are) num_intersections=4, # Number of intersections (no start / target) num_trainstations=10, # Number of possible start/targets on map min_node_dist=3, # Minimal distance of nodes node_radius=2, # Proximity of stations to city center num_neighb=3, # Number of connections to other cities/intersections seed=15, # Random seed grid_mode=True, enhance_intersection=False ), schedule_generator=sparse_schedule_generator(speed_ration_map), number_of_agents=n_agents, stochastic_data=stochastic_data, # Malfunction data generator obs_builder_object=observation_helper) env.reset(True, True) env_renderer = RenderTool(env, gl="PILSVG", ) handle = env.get_agent_handles() num_features_per_node = env.obs_builder.observation_dim nr_nodes = 0 for i in range(tree_depth + 1): nr_nodes += np.power(4, i) state_size = num_features_per_node * nr_nodes action_size = 5 n_trials = 10 observation_radius = 10 max_steps = int(3 * (env.height + env.width)) eps = 1. eps_end = 0.005 eps_decay = 0.9995 action_dict = dict() final_action_dict = dict() scores_window = deque(maxlen=100) done_window = deque(maxlen=100) time_obs = deque(maxlen=2) scores = [] dones_list = [] action_prob = [0] * action_size agent_obs = [None] * env.get_num_agents() agent_next_obs = [None] * env.get_num_agents() agent = Agent(state_size, action_size, "FC", 0) with path(torch_training.Nets, "avoid_checkpoint60000.pth") as file_in: agent.qnetwork_local.load_state_dict(torch.load(file_in)) record_images = False frame_step = 0 for trials in range(1, n_trials + 1): # Reset environment obs = env.reset(True, True) env_renderer.reset() for a in range(env.get_num_agents()): agent_obs[a] = normalize_observation(obs[a], observation_radius=10) # Run episode for step in range(max_steps): env_renderer.render_env(show=True, show_observations=False, show_predictions=True) if record_images: env_renderer.gl.save_image("./Images/Avoiding/flatland_frame_{:04d}.bmp".format(frame_step)) frame_step += 1 # time.sleep(1.5) # Action for a in range(env.get_num_agents()): action = agent.act(agent_obs[a], eps=0) action_dict.update({a: action}) # Environment step next_obs, all_rewards, done, _ = env.step(action_dict) for a in range(env.get_num_agents()): agent_obs[a] = normalize_observation(next_obs[a], observation_radius=10) if done['__all__']: break