diff --git a/torch_training/bla.py b/torch_training/bla.py index ec81697ac1a41b6ca2ec12803b6c6817578ea6ed..f76c4ab267ce14dab7181625437ddc004710ebd8 100644 --- a/torch_training/bla.py +++ b/torch_training/bla.py @@ -117,25 +117,25 @@ def main(argv): obs = env.reset(True, True) if demo: env_renderer.set_new_rail() - # obs_original = obs.copy() - # final_obs = obs.copy() - # final_obs_next = obs.copy() - # for a in range(env.get_num_agents()): - # data, distance, agent_data = split_tree(tree=np.array(obs[a]), - # current_depth=0) - # data = norm_obs_clip(data) - # distance = norm_obs_clip(distance) - # agent_data = np.clip(agent_data, -1, 1) - # obs[a] = np.concatenate((np.concatenate((data, distance)), agent_data)) - # agent_data = env.agents[a] - # speed = 1 # np.random.randint(1,5) - # agent_data.speed_data['speed'] = 1. / speed - # - # for i in range(2): - # time_obs.append(obs) - # # env.obs_builder.util_print_obs_subtree(tree=obs[0], num_elements_per_node=5) - # for a in range(env.get_num_agents()): - # agent_obs[a] = np.concatenate((time_obs[0][a], time_obs[1][a])) + obs_original = obs.copy() + final_obs = obs.copy() + final_obs_next = obs.copy() + for a in range(env.get_num_agents()): + data, distance, agent_data = split_tree(tree=np.array(obs[a]), + current_depth=0) + data = norm_obs_clip(data) + distance = norm_obs_clip(distance) + agent_data = np.clip(agent_data, -1, 1) + obs[a] = np.concatenate((np.concatenate((data, distance)), agent_data)) + agent_data = env.agents[a] + speed = 1 # np.random.randint(1,5) + agent_data.speed_data['speed'] = 1. / speed + + for i in range(2): + time_obs.append(obs) + # env.obs_builder.util_print_obs_subtree(tree=obs[0], num_elements_per_node=5) + for a in range(env.get_num_agents()): + agent_obs[a] = np.concatenate((time_obs[0][a], time_obs[1][a])) # # score = 0 # env_done = 0