diff --git a/CustomPreprocessor.py b/RLLib_training/CustomPreprocessor.py similarity index 90% rename from CustomPreprocessor.py rename to RLLib_training/CustomPreprocessor.py index 3a2e5c106baad72a9b99226e6b0065797f2c0ddb..7d23b8cf8030ac12efb378d6dae54b90b1bdc678 100644 --- a/CustomPreprocessor.py +++ b/RLLib_training/CustomPreprocessor.py @@ -36,7 +36,7 @@ def norm_obs_clip(obs, clip_min=-1, clip_max=1): :param obs: Observation that should be normalized :param clip_min: min value where observation will be clipped :param clip_max: max value where observation will be clipped - :return: returnes normalized and clipped observatoin + :return: returns normalized and clipped observation """ max_obs = max(1, max_lt(obs, 1000)) min_obs = max(0, min_lt(obs, 0)) @@ -53,7 +53,11 @@ class CustomPreprocessor(Preprocessor): return (105,) def transform(self, observation): - return norm_obs_clip(observation) # return the preprocessed observation + if len(observation) == 105: + return norm_obs_clip(observation) + else: + return observation + diff --git a/README.md b/RLLib_training/README.md similarity index 100% rename from README.md rename to RLLib_training/README.md diff --git a/RailEnvRLLibWrapper.py b/RLLib_training/RailEnvRLLibWrapper.py similarity index 100% rename from RailEnvRLLibWrapper.py rename to RLLib_training/RailEnvRLLibWrapper.py diff --git a/experiment_configs/CustomModels.py b/RLLib_training/experiment_configs/CustomModels.py similarity index 100% rename from experiment_configs/CustomModels.py rename to RLLib_training/experiment_configs/CustomModels.py diff --git a/experiment_configs/entropy_coeff_benchmark/config.gin b/RLLib_training/experiment_configs/entropy_coeff_benchmark/config.gin similarity index 100% rename from experiment_configs/entropy_coeff_benchmark/config.gin rename to RLLib_training/experiment_configs/entropy_coeff_benchmark/config.gin diff --git a/experiment_configs/n_agents_experiment/config.gin b/RLLib_training/experiment_configs/n_agents_experiment/config.gin similarity index 100% rename from experiment_configs/n_agents_experiment/config.gin rename to RLLib_training/experiment_configs/n_agents_experiment/config.gin diff --git a/experiment_configs/observation_benchmark/config.gin b/RLLib_training/experiment_configs/observation_benchmark/config.gin similarity index 100% rename from experiment_configs/observation_benchmark/config.gin rename to RLLib_training/experiment_configs/observation_benchmark/config.gin diff --git a/train.py b/RLLib_training/train.py similarity index 100% rename from train.py rename to RLLib_training/train.py diff --git a/train_experiment.py b/RLLib_training/train_experiment.py similarity index 100% rename from train_experiment.py rename to RLLib_training/train_experiment.py diff --git a/torch_training/Nets/avoid_checkpoint15000.pth b/torch_training/Nets/avoid_checkpoint15000.pth new file mode 100644 index 0000000000000000000000000000000000000000..14882a37a86085b137f4422b6bba75f387a2d3b5 Binary files /dev/null and b/torch_training/Nets/avoid_checkpoint15000.pth differ diff --git a/torch_training/__init__.py b/torch_training/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/torch_training/dueling_double_dqn.py b/torch_training/dueling_double_dqn.py new file mode 100644 index 0000000000000000000000000000000000000000..c2ff1a7f1f8502926efa88c932c31bff1a2ed179 --- /dev/null +++ b/torch_training/dueling_double_dqn.py @@ -0,0 +1,200 @@ +import copy +import os +import random +from collections import namedtuple, deque, Iterable + +import numpy as np +import torch +import torch.nn.functional as F +import torch.optim as optim + +from baselines.torch_training.model import QNetwork, QNetwork2 + +BUFFER_SIZE = int(1e5) # replay buffer size +BATCH_SIZE = 512 # minibatch size +GAMMA = 0.99 # discount factor 0.99 +TAU = 1e-3 # for soft update of target parameters +LR = 0.5e-4 # learning rate 5 +UPDATE_EVERY = 10 # how often to update the network +double_dqn = True # If using double dqn algorithm +input_channels = 5 # Number of Input channels + +device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") +device = torch.device("cpu") +print(device) + + +class Agent: + """Interacts with and learns from the environment.""" + + def __init__(self, state_size, action_size, net_type, seed, double_dqn=True, input_channels=5): + """Initialize an Agent object. + + Params + ====== + state_size (int): dimension of each state + action_size (int): dimension of each action + seed (int): random seed + """ + self.state_size = state_size + self.action_size = action_size + self.seed = random.seed(seed) + self.version = net_type + self.double_dqn = double_dqn + # Q-Network + if self.version == "Conv": + self.qnetwork_local = QNetwork2(state_size, action_size, seed, input_channels).to(device) + self.qnetwork_target = copy.deepcopy(self.qnetwork_local) + else: + self.qnetwork_local = QNetwork(state_size, action_size, seed).to(device) + self.qnetwork_target = copy.deepcopy(self.qnetwork_local) + + self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR) + + # Replay memory + self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed) + # Initialize time step (for updating every UPDATE_EVERY steps) + self.t_step = 0 + + def save(self, filename): + torch.save(self.qnetwork_local.state_dict(), filename + ".local") + torch.save(self.qnetwork_target.state_dict(), filename + ".target") + + def load(self, filename): + if os.path.exists(filename + ".local"): + self.qnetwork_local.load_state_dict(torch.load(filename + ".local")) + if os.path.exists(filename + ".target"): + self.qnetwork_target.load_state_dict(torch.load(filename + ".target")) + + def step(self, state, action, reward, next_state, done, train=True): + # Save experience in replay memory + self.memory.add(state, action, reward, next_state, done) + + # Learn every UPDATE_EVERY time steps. + self.t_step = (self.t_step + 1) % UPDATE_EVERY + if self.t_step == 0: + # If enough samples are available in memory, get random subset and learn + if len(self.memory) > BATCH_SIZE: + experiences = self.memory.sample() + if train: + self.learn(experiences, GAMMA) + + def act(self, state, eps=0.): + """Returns actions for given state as per current policy. + + Params + ====== + state (array_like): current state + eps (float): epsilon, for epsilon-greedy action selection + """ + state = torch.from_numpy(state).float().unsqueeze(0).to(device) + self.qnetwork_local.eval() + with torch.no_grad(): + action_values = self.qnetwork_local(state) + self.qnetwork_local.train() + + # Epsilon-greedy action selection + if random.random() > eps: + return np.argmax(action_values.cpu().data.numpy()) + else: + return random.choice(np.arange(self.action_size)) + + def learn(self, experiences, gamma): + + """Update value parameters using given batch of experience tuples. + + Params + ====== + experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples + gamma (float): discount factor + """ + states, actions, rewards, next_states, dones = experiences + + # Get expected Q values from local model + Q_expected = self.qnetwork_local(states).gather(1, actions) + + if self.double_dqn: + # Double DQN + q_best_action = self.qnetwork_local(next_states).max(1)[1] + Q_targets_next = self.qnetwork_target(next_states).gather(1, q_best_action.unsqueeze(-1)) + else: + # DQN + Q_targets_next = self.qnetwork_target(next_states).detach().max(1)[0].unsqueeze(-1) + + # Compute Q targets for current states + + Q_targets = rewards + (gamma * Q_targets_next * (1 - dones)) + + # Compute loss + loss = F.mse_loss(Q_expected, Q_targets) + # Minimize the loss + self.optimizer.zero_grad() + loss.backward() + self.optimizer.step() + + # ------------------- update target network ------------------- # + self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU) + + def soft_update(self, local_model, target_model, tau): + """Soft update model parameters. + θ_target = τ*θ_local + (1 - τ)*θ_target + + Params + ====== + local_model (PyTorch model): weights will be copied from + target_model (PyTorch model): weights will be copied to + tau (float): interpolation parameter + """ + for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): + target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data) + + +class ReplayBuffer: + """Fixed-size buffer to store experience tuples.""" + + def __init__(self, action_size, buffer_size, batch_size, seed): + """Initialize a ReplayBuffer object. + + Params + ====== + action_size (int): dimension of each action + buffer_size (int): maximum size of buffer + batch_size (int): size of each training batch + seed (int): random seed + """ + self.action_size = action_size + self.memory = deque(maxlen=buffer_size) + self.batch_size = batch_size + self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"]) + self.seed = random.seed(seed) + + def add(self, state, action, reward, next_state, done): + """Add a new experience to memory.""" + e = self.experience(np.expand_dims(state, 0), action, reward, np.expand_dims(next_state, 0), done) + self.memory.append(e) + + def sample(self): + """Randomly sample a batch of experiences from memory.""" + experiences = random.sample(self.memory, k=self.batch_size) + + states = torch.from_numpy(self.__v_stack_impr([e.state for e in experiences if e is not None])) \ + .float().to(device) + actions = torch.from_numpy(self.__v_stack_impr([e.action for e in experiences if e is not None])) \ + .long().to(device) + rewards = torch.from_numpy(self.__v_stack_impr([e.reward for e in experiences if e is not None])) \ + .float().to(device) + next_states = torch.from_numpy(self.__v_stack_impr([e.next_state for e in experiences if e is not None])) \ + .float().to(device) + dones = torch.from_numpy(self.__v_stack_impr([e.done for e in experiences if e is not None]).astype(np.uint8)) \ + .float().to(device) + + return (states, actions, rewards, next_states, dones) + + def __len__(self): + """Return the current size of internal memory.""" + return len(self.memory) + + def __v_stack_impr(self, states): + sub_dim = len(states[0][0]) if isinstance(states[0], Iterable) else 1 + np_states = np.reshape(np.array(states), (len(states), sub_dim)) + return np_states diff --git a/torch_training/model.py b/torch_training/model.py new file mode 100644 index 0000000000000000000000000000000000000000..7a5b3d613342a4fba8e2c8f1f45df21381e12684 --- /dev/null +++ b/torch_training/model.py @@ -0,0 +1,61 @@ +import torch.nn as nn +import torch.nn.functional as F + + +class QNetwork(nn.Module): + def __init__(self, state_size, action_size, seed, hidsize1=128, hidsize2=128): + super(QNetwork, self).__init__() + + self.fc1_val = nn.Linear(state_size, hidsize1) + self.fc2_val = nn.Linear(hidsize1, hidsize2) + self.fc3_val = nn.Linear(hidsize2, 1) + + self.fc1_adv = nn.Linear(state_size, hidsize1) + self.fc2_adv = nn.Linear(hidsize1, hidsize2) + self.fc3_adv = nn.Linear(hidsize2, action_size) + + def forward(self, x): + val = F.relu(self.fc1_val(x)) + val = F.relu(self.fc2_val(val)) + val = self.fc3_val(val) + + # advantage calculation + adv = F.relu(self.fc1_adv(x)) + adv = F.relu(self.fc2_adv(adv)) + adv = self.fc3_adv(adv) + return val + adv - adv.mean() + + +class QNetwork2(nn.Module): + def __init__(self, state_size, action_size, seed, input_channels, hidsize1=128, hidsize2=64): + super(QNetwork2, self).__init__() + self.conv1 = nn.Conv2d(input_channels, 16, kernel_size=3, stride=1) + self.bn1 = nn.BatchNorm2d(16) + self.conv2 = nn.Conv2d(16, 32, kernel_size=5, stride=3) + self.bn2 = nn.BatchNorm2d(32) + self.conv3 = nn.Conv2d(32, 64, kernel_size=5, stride=3) + self.bn3 = nn.BatchNorm2d(64) + + self.fc1_val = nn.Linear(6400, hidsize1) + self.fc2_val = nn.Linear(hidsize1, hidsize2) + self.fc3_val = nn.Linear(hidsize2, 1) + + self.fc1_adv = nn.Linear(6400, hidsize1) + self.fc2_adv = nn.Linear(hidsize1, hidsize2) + self.fc3_adv = nn.Linear(hidsize2, action_size) + + def forward(self, x): + x = F.relu(self.conv1(x)) + x = F.relu(self.conv2(x)) + x = F.relu(self.conv3(x)) + + # value function approximation + val = F.relu(self.fc1_val(x.view(x.size(0), -1))) + val = F.relu(self.fc2_val(val)) + val = self.fc3_val(val) + + # advantage calculation + adv = F.relu(self.fc1_adv(x.view(x.size(0), -1))) + adv = F.relu(self.fc2_adv(adv)) + adv = self.fc3_adv(adv) + return val + adv - adv.mean() diff --git a/torch_training/training_navigation.py b/torch_training/training_navigation.py new file mode 100644 index 0000000000000000000000000000000000000000..8736e3d8e665e521e2b34de9136488925782ee28 --- /dev/null +++ b/torch_training/training_navigation.py @@ -0,0 +1,214 @@ +import random +from collections import deque + +import numpy as np +import torch + +from baselines.torch_training.dueling_double_dqn import Agent +from flatland.envs.generators import complex_rail_generator +from flatland.envs.rail_env import RailEnv +from flatland.utils.rendertools import RenderTool + +random.seed(1) +np.random.seed(1) + +# Example generate a rail given a manual specification, +# a map of tuples (cell_type, rotation) +transition_probability = [15, # empty cell - Case 0 + 5, # Case 1 - straight + 5, # Case 2 - simple switch + 1, # Case 3 - diamond crossing + 1, # Case 4 - single slip + 1, # Case 5 - double slip + 1, # Case 6 - symmetrical + 0, # Case 7 - dead end + 1, # Case 1b (8) - simple turn right + 1, # Case 1c (9) - simple turn left + 1] # Case 2b (10) - simple switch mirrored + +# Example generate a random rail +""" +env = RailEnv(width=20, + height=20, + rail_generator=random_rail_generator(cell_type_relative_proportion=transition_probability), + number_of_agents=1) +""" +env = RailEnv(width=15, + height=15, + rail_generator=complex_rail_generator(nr_start_goal=10, nr_extra=10, min_dist=10, max_dist=99999, seed=0), + number_of_agents=5) + +""" +env = RailEnv(width=20, + height=20, + rail_generator=rail_from_list_of_saved_GridTransitionMap_generator( + ['../notebooks/temp.npy']), + number_of_agents=3) + +""" +env_renderer = RenderTool(env, gl="QTSVG") +handle = env.get_agent_handles() + +state_size = 105 * 2 +action_size = 4 +n_trials = 15000 +eps = 1. +eps_end = 0.005 +eps_decay = 0.9995 +action_dict = dict() +final_action_dict = dict() +scores_window = deque(maxlen=100) +done_window = deque(maxlen=100) +time_obs = deque(maxlen=2) +scores = [] +dones_list = [] +action_prob = [0] * 4 +agent_obs = [None] * env.get_num_agents() +agent_next_obs = [None] * env.get_num_agents() +agent = Agent(state_size, action_size, "FC", 0) +agent.qnetwork_local.load_state_dict(torch.load('./baselines/torch_training/Nets/avoid_checkpoint15000.pth')) + +demo = True + + +def max_lt(seq, val): + """ + Return greatest item in seq for which item < val applies. + None is returned if seq was empty or all items in seq were >= val. + """ + max = 0 + idx = len(seq) - 1 + while idx >= 0: + if seq[idx] < val and seq[idx] >= 0 and seq[idx] > max: + max = seq[idx] + idx -= 1 + return max + + +def min_lt(seq, val): + """ + Return smallest item in seq for which item > val applies. + None is returned if seq was empty or all items in seq were >= val. + """ + min = np.inf + idx = len(seq) - 1 + while idx >= 0: + if seq[idx] > val and seq[idx] < min: + min = seq[idx] + idx -= 1 + return min + + +def norm_obs_clip(obs, clip_min=-1, clip_max=1): + """ + This function returns the difference between min and max value of an observation + :param obs: Observation that should be normalized + :param clip_min: min value where observation will be clipped + :param clip_max: max value where observation will be clipped + :return: returnes normalized and clipped observatoin + """ + max_obs = max(1, max_lt(obs, 1000)) + min_obs = max(0, min_lt(obs, 0)) + if max_obs == min_obs: + return np.clip(np.array(obs) / max_obs, clip_min, clip_max) + norm = np.abs(max_obs - min_obs) + if norm == 0: + norm = 1. + return np.clip((np.array(obs) - min_obs) / norm, clip_min, clip_max) + + +for trials in range(1, n_trials + 1): + + # Reset environment + obs = env.reset() + + final_obs = obs.copy() + final_obs_next = obs.copy() + + for a in range(env.get_num_agents()): + data, distance = env.obs_builder.split_tree(tree=np.array(obs[a]), num_features_per_node=5, current_depth=0) + + data = norm_obs_clip(data) + distance = norm_obs_clip(distance) + obs[a] = np.concatenate((data, distance)) + + for i in range(2): + time_obs.append(obs) + # env.obs_builder.util_print_obs_subtree(tree=obs[0], num_elements_per_node=5) + for a in range(env.get_num_agents()): + agent_obs[a] = np.concatenate((time_obs[0][a], time_obs[1][a])) + + score = 0 + env_done = 0 + # Run episode + for step in range(100): + if demo: + env_renderer.renderEnv(show=True) + # print(step) + # Action + for a in range(env.get_num_agents()): + if demo: + eps = 0 + # action = agent.act(np.array(obs[a]), eps=eps) + action = agent.act(agent_obs[a]) + action_prob[action] += 1 + action_dict.update({a: action}) + + # Environment step + next_obs, all_rewards, done, _ = env.step(action_dict) + for a in range(env.get_num_agents()): + data, distance = env.obs_builder.split_tree(tree=np.array(next_obs[a]), num_features_per_node=5, + current_depth=0) + data = norm_obs_clip(data) + distance = norm_obs_clip(distance) + next_obs[a] = np.concatenate((data, distance)) + + time_obs.append(next_obs) + + # Update replay buffer and train agent + for a in range(env.get_num_agents()): + agent_next_obs[a] = np.concatenate((time_obs[0][a], time_obs[1][a])) + + if done[a]: + final_obs[a] = agent_obs[a].copy() + final_obs_next[a] = agent_next_obs[a].copy() + final_action_dict.update({a: action_dict[a]}) + if not demo and not done[a]: + agent.step(agent_obs[a], action_dict[a], all_rewards[a], agent_next_obs[a], done[a]) + score += all_rewards[a] + + agent_obs = agent_next_obs.copy() + if done['__all__']: + env_done = 1 + for a in range(env.get_num_agents()): + agent.step(final_obs[a], final_action_dict[a], all_rewards[a], final_obs_next[a], done[a]) + break + # Epsilon decay + eps = max(eps_end, eps_decay * eps) # decrease epsilon + + done_window.append(env_done) + scores_window.append(score) # save most recent score + scores.append(np.mean(scores_window)) + dones_list.append((np.mean(done_window))) + + print('\rTraining {} Agents.\t Episode {}\t Average Score: {:.0f}\tDones: {:.2f}%' + + '\tEpsilon: {:.2f} \t Action Probabilities: \t {}'.format( + env.get_num_agents(), + trials, + np.mean(scores_window), + 100 * np.mean(done_window), + eps, action_prob / np.sum(action_prob)), end=" ") + + if trials % 100 == 0: + print( + '\rTraining {} Agents.\t Episode {}\t Average Score: {:.0f}\tDones: {:.2f}%' + + '\tEpsilon: {:.2f} \t Action Probabilities: \t {}'.format( + env.get_num_agents(), + trials, + np.mean(scores_window), + 100 * np.mean(done_window), + eps, + action_prob / np.sum(action_prob))) + torch.save(agent.qnetwork_local.state_dict(), + '../flatland/baselines/Nets/avoid_checkpoint' + str(trials) + '.pth') + action_prob = [1] * 4