from flatland.envs.rail_env import RailEnv, random_rail_generator, complex_rail_generator # from flatland.core.env_observation_builder import TreeObsForRailEnv from flatland.utils.rendertools import RenderTool from flatland.baselines.dueling_double_dqn import Agent from collections import deque import torch import random import numpy as np #import matplotlib.pyplot as plt import time def main(render=True, delay=0.0): random.seed(1) np.random.seed(1) # Example generate a rail given a manual specification, # a map of tuples (cell_type, rotation) #transition_probability = [0.5, # empty cell - Case 0 # 1.0, # Case 1 - straight # 1.0, # Case 2 - simple switch # 0.3, # Case 3 - diamond crossing # 0.5, # Case 4 - single slip # 0.5, # Case 5 - double slip # 0.2, # Case 6 - symmetrical # 0.0] # Case 7 - dead end # Example generate a random rail env = RailEnv(width=15, height=15, rail_generator=complex_rail_generator(nr_start_goal=20, min_dist=5), number_of_agents=1) if render: env_renderer = RenderTool(env, gl="QT") # plt.figure(figsize=(5,5)) # fRedis = redis.Redis() handle = env.get_agent_handles() state_size = 105 action_size = 4 n_trials = 9999 eps = 1. eps_end = 0.005 eps_decay = 0.998 action_dict = dict() scores_window = deque(maxlen=100) done_window = deque(maxlen=100) scores = [] dones_list = [] action_prob = [0]*4 agent = Agent(state_size, action_size, "FC", 0) # agent.qnetwork_local.load_state_dict(torch.load('../flatland/baselines/Nets/avoid_checkpoint9900.pth')) def max_lt(seq, val): """ Return greatest item in seq for which item < val applies. None is returned if seq was empty or all items in seq were >= val. """ idx = len(seq)-1 while idx >= 0: if seq[idx] < val and seq[idx] >= 0: return seq[idx] idx -= 1 return None iFrame = 0 tStart = time.time() for trials in range(1, n_trials + 1): # Reset environment obs = env.reset() for a in range(env.number_of_agents): norm = max(1, max_lt(obs[a],np.inf)) obs[a] = np.clip(np.array(obs[a]) / norm, -1, 1) # env.obs_builder.util_print_obs_subtree(tree=obs[0], num_elements_per_node=5) score = 0 env_done = 0 # Run episode for step in range(50): #if trials > 114: #env_renderer.renderEnv(show=True) #print(step) # Action for a in range(env.number_of_agents): action = agent.act(np.array(obs[a]), eps=eps) action_prob[action] += 1 action_dict.update({a: action}) # Environment step next_obs, all_rewards, done, _ = env.step(action_dict) for a in range(env.number_of_agents): norm = max(1, max_lt(next_obs[a], np.inf)) next_obs[a] = np.clip(np.array(next_obs[a]) / norm, -1, 1) # Update replay buffer and train agent for a in range(env.number_of_agents): agent.step(obs[a], action_dict[a], all_rewards[a], next_obs[a], done[a]) score += all_rewards[a] if render: env_renderer.renderEnv(show=True, frames=True, iEpisode=trials, iStep=step) if delay > 0: time.sleep(delay) iFrame += 1 obs = next_obs.copy() if done['__all__']: env_done = 1 break # Epsilon decay eps = max(eps_end, eps_decay * eps) # decrease epsilon done_window.append(env_done) scores_window.append(score) # save most recent score scores.append(np.mean(scores_window)) dones_list.append((np.mean(done_window))) print(('\rTraining {} Agents.\tEpisode {}\tAverage Score: {:.0f}\tDones: {:.2f}%' + '\tEpsilon: {:.2f} \t Action Probabilities: \t {}').format( env.number_of_agents, trials, np.mean(scores_window), 100 * np.mean(done_window), eps, action_prob/np.sum(action_prob)), end=" ") if trials % 100 == 0: tNow = time.time() rFps = iFrame / (tNow - tStart) print(('\rTraining {} Agents.\tEpisode {}\tAverage Score: {:.0f}\tDones: {:.2f}%' + '\tEpsilon: {:.2f} fps: {:.2f} \t Action Probabilities: \t {}').format( env.number_of_agents, trials, np.mean(scores_window), 100 * np.mean(done_window), eps, rFps, action_prob / np.sum(action_prob))) torch.save(agent.qnetwork_local.state_dict(), '../flatland/baselines/Nets/avoid_checkpoint' + str(trials) + '.pth') action_prob = [1]*4 if __name__ == "__main__": main()