from flatland.envs.rail_env import * from flatland.envs.generators import * from flatland.core.env_observation_builder import TreeObsForRailEnv from flatland.utils.rendertools import * from flatland.baselines.dueling_double_dqn import Agent from collections import deque import torch, random random.seed(1) np.random.seed(1) # Example generate a rail given a manual specification, # a map of tuples (cell_type, rotation) transition_probability = [5, # empty cell - Case 0 15, # Case 1 - straight 5, # Case 2 - simple switch 1, # Case 3 - diamond crossing 1, # Case 4 - single slip 1, # Case 5 - double slip 1, # Case 6 - symmetrical 0] # Case 7 - dead end # Example generate a random rail env = RailEnv(width=10, height=10, rail_generator=random_rail_generator(cell_type_relative_proportion=transition_probability), number_of_agents=1) """ env = RailEnv(width=20, height=20, rail_generator=complex_rail_generator(nr_start_goal=20, min_dist=10, max_dist=99999, seed=0), number_of_agents=5) env = RailEnv(width=20, height=20, rail_generator=rail_from_list_of_saved_GridTransitionMap_generator( ['../env-data/tests/circle.npy']), number_of_agents=1) """ env_renderer = RenderTool(env, gl="QT") handle = env.get_agent_handles() state_size = 105 action_size = 4 n_trials = 15000 eps = 1. eps_end = 0.005 eps_decay = 0.998 action_dict = dict() scores_window = deque(maxlen=100) done_window = deque(maxlen=100) scores = [] dones_list = [] action_prob = [0] * 4 agent = Agent(state_size, action_size, "FC", 0) agent.qnetwork_local.load_state_dict(torch.load('../flatland/baselines/Nets/avoid_checkpoint14900.pth')) demo = True def max_lt(seq, val): """ Return greatest item in seq for which item < val applies. None is returned if seq was empty or all items in seq were >= val. """ max = 0 idx = len(seq) - 1 while idx >= 0: if seq[idx] < val and seq[idx] >= 0 and seq[idx] > max: max = seq[idx] idx -= 1 return max def min_lt(seq, val): """ Return smallest item in seq for which item > val applies. None is returned if seq was empty or all items in seq were >= val. """ min = np.inf idx = len(seq) - 1 while idx >= 0: if seq[idx] > val and seq[idx] < min: min = seq[idx] idx -= 1 return min for trials in range(1, n_trials + 1): # Reset environment obs = env.reset() for a in range(env.number_of_agents): norm = max(1, max_lt(obs[a], np.inf)) obs[a] = np.clip(np.array(obs[a]) / norm, -1, 1) # env.obs_builder.util_print_obs_subtree(tree=obs[0], num_elements_per_node=5) score = 0 env_done = 0 # Run episode for step in range(100): if demo: env_renderer.renderEnv(show=True) # print(step) # Action for a in range(env.number_of_agents): if demo: eps = 0 action = agent.act(np.array(obs[a]), eps=eps) action_prob[action] += 1 action_dict.update({a: action}) #env.obs_builder.util_print_obs_subtree(tree=obs[a], num_features_per_node=5) # Environment step next_obs, all_rewards, done, _ = env.step(action_dict) for a in range(env.number_of_agents): norm = max(1, max_lt(next_obs[a], np.inf)) next_obs[a] = np.clip(np.array(next_obs[a]) / norm, -1, 1) # Update replay buffer and train agent for a in range(env.number_of_agents): agent.step(obs[a], action_dict[a], all_rewards[a], next_obs[a], done[a]) score += all_rewards[a] obs = next_obs.copy() if done['__all__']: env_done = 1 break # Epsilon decay eps = max(eps_end, eps_decay * eps) # decrease epsilon done_window.append(env_done) scores_window.append(score) # save most recent score scores.append(np.mean(scores_window)) dones_list.append((np.mean(done_window))) print( '\rTraining {} Agents.\tEpisode {}\tAverage Score: {:.0f}\tDones: {:.2f}%\tEpsilon: {:.2f} \t Action Probabilities: \t {}'.format( env.number_of_agents, trials, np.mean( scores_window), 100 * np.mean( done_window), eps, action_prob / np.sum(action_prob)), end=" ") if trials % 100 == 0: print( '\rTraining {} Agents.\tEpisode {}\tAverage Score: {:.0f}\tDones: {:.2f}%\tEpsilon: {:.2f} \t Action Probabilities: \t {}'.format( env.number_of_agents, trials, np.mean( scores_window), 100 * np.mean( done_window), eps, action_prob / np.sum(action_prob))) torch.save(agent.qnetwork_local.state_dict(), '../flatland/baselines/Nets/avoid_checkpoint' + str(trials) + '.pth') action_prob = [1] * 4