import random import numpy as np import matplotlib.pyplot as plt from flatland.core.env import RailEnv from flatland.utils.rail_env_generator import * from flatland.utils.rendertools import * random.seed(1) np.random.seed(1) # Example generate a random rail rail = generate_random_rail(20, 20) env = RailEnv(rail, number_of_agents=10) env.reset() env_renderer = RenderTool(env) env_renderer.renderEnv(show=True) # Example generate a rail given a manual specification, # a map of tuples (cell_type, rotation) specs = [[(0, 0), (0, 0), (0, 0), (0, 0), (7, 0), (0, 0)], [(7, 270), (1, 90), (1, 90), (1, 90), (2, 90), (7, 90)]] rail = generate_rail_from_manual_specifications(specs) env = RailEnv(rail, number_of_agents=1) handle = env.get_agent_handles() env.reset() env.agents_position = [[1, 4]] env.agents_target = [[1, 1]] env.agents_direction = [1] env_renderer = RenderTool(env) env_renderer.renderEnv(show=True) print("Manual control: s=perform step, q=quit, [agent id] [1-2-3 action] \ (turnleft+move, move to front, turnright+move)") for step in range(100): cmd = input(">> ") cmds = cmd.split(" ") action_dict = {} i = 0 while i < len(cmds): if cmds[i] == 'q': import sys sys.exit() elif cmds[i] == 's': obs, all_rewards, done, _ = env.step(action_dict) action_dict = {} print("Rewards: ", all_rewards, " [done=", done, "]") else: agent_id = int(cmds[i]) action = int(cmds[i+1]) action_dict[agent_id] = action i = i+1 i += 1 env_renderer.renderEnv(show=True)