import random import numpy as np from flatland.envs.observations import TreeObsForRailEnv from flatland.core.env_observation_builder import ObservationBuilder from flatland.envs.generators import random_rail_generator, complex_rail_generator from flatland.envs.rail_env import RailEnv from flatland.utils.rendertools import RenderTool random.seed(100) np.random.seed(100) class SimpleObs(ObservationBuilder): """ Simplest observation builder. The object returns observation vectors with 5 identical components, all equal to the ID of the respective agent. """ def __init__(self): self.observation_space = [5] def reset(self): return def get(self, handle): observation = handle * np.ones((5,)) return observation env = RailEnv(width=7, height=7, rail_generator=random_rail_generator(), number_of_agents=3, obs_builder_object=SimpleObs()) # Print the observation vector for each agents obs, all_rewards, done, _ = env.step({0: 0}) for i in range(env.get_num_agents()): print("Agent ", i, "'s observation: ", obs[i]) class SingleAgentNavigationObs(TreeObsForRailEnv): """ We derive our bbservation builder from TreeObsForRailEnv, to exploit the existing implementation to compute the minimum distances from each grid node to each agent's target. We then build a representation vector with 3 binary components, indicating which of the 3 available directions for each agent (Left, Forward, Right) lead to the shortest path to its target. E.g., if taking the Left branch (if available) is the shortest route to the agent's target, the observation vector will be [1, 0, 0]. """ def __init__(self): super().__init__(max_depth=0) self.observation_space = [3] def reset(self): # Recompute the distance map, if the environment has changed. super().reset() def get(self, handle): agent = self.env.agents[handle] possible_transitions = self.env.rail.get_transitions(*agent.position, agent.direction) num_transitions = np.count_nonzero(possible_transitions) # Start from the current orientation, and see which transitions are available; # organize them as [left, forward, right], relative to the current orientation # If only one transition is possible, the forward branch is aligned with it. if num_transitions == 1: observation = [0, 1, 0] else: min_distances = [] for direction in [(agent.direction + i) % 4 for i in range(-1, 2)]: if possible_transitions[direction]: new_position = self._new_position(agent.position, direction) min_distances.append(self.distance_map[handle, new_position[0], new_position[1], direction]) else: min_distances.append(np.inf) observation = [0, 0, 0] observation[np.argmin(min_distances)] = 1 return observation env = RailEnv(width=7, height=7, rail_generator=complex_rail_generator(nr_start_goal=10, nr_extra=1, min_dist=8, max_dist=99999, seed=0), number_of_agents=2, obs_builder_object=SingleAgentNavigationObs()) obs, all_rewards, done, _ = env.step({0: 0, 1: 1}) for i in range(env.get_num_agents()): print(obs[i]) env_renderer = RenderTool(env) env_renderer.render_env(show=True, frames=True, show_observations=False) env_renderer.render_env(show=True, frames=True, show_observations=False) x = input()