diff --git a/baselines/Nets/avoid_checkpoint9900.pth b/baselines/Nets/avoid_checkpoint9900.pth deleted file mode 100644 index 5fae4c2908a10725315f388f7862860cd3ab5a52..0000000000000000000000000000000000000000 Binary files a/baselines/Nets/avoid_checkpoint9900.pth and /dev/null differ diff --git a/baselines/Nets/dummy b/baselines/Nets/dummy deleted file mode 100644 index bf453594ba586f318379101f00d73ec29f688e97..0000000000000000000000000000000000000000 --- a/baselines/Nets/dummy +++ /dev/null @@ -1 +0,0 @@ -dummy file for empty folder diff --git a/examples/training_navigation.py b/examples/training_navigation.py deleted file mode 100644 index 0cb9d275eda2a01932c4f632c1abd4fb662f4037..0000000000000000000000000000000000000000 --- a/examples/training_navigation.py +++ /dev/null @@ -1,214 +0,0 @@ -import random -from collections import deque - -import numpy as np -import torch - -from flatland.baselines.dueling_double_dqn import Agent -from flatland.envs.generators import complex_rail_generator -from flatland.envs.rail_env import RailEnv -from flatland.utils.rendertools import RenderTool - -random.seed(1) -np.random.seed(1) - -# Example generate a rail given a manual specification, -# a map of tuples (cell_type, rotation) -transition_probability = [15, # empty cell - Case 0 - 5, # Case 1 - straight - 5, # Case 2 - simple switch - 1, # Case 3 - diamond crossing - 1, # Case 4 - single slip - 1, # Case 5 - double slip - 1, # Case 6 - symmetrical - 0, # Case 7 - dead end - 1, # Case 1b (8) - simple turn right - 1, # Case 1c (9) - simple turn left - 1] # Case 2b (10) - simple switch mirrored - -# Example generate a random rail -""" -env = RailEnv(width=20, - height=20, - rail_generator=random_rail_generator(cell_type_relative_proportion=transition_probability), - number_of_agents=1) -""" -env = RailEnv(width=15, - height=15, - rail_generator=complex_rail_generator(nr_start_goal=10, nr_extra=10, min_dist=10, max_dist=99999, seed=0), - number_of_agents=5) - -""" -env = RailEnv(width=20, - height=20, - rail_generator=rail_from_list_of_saved_GridTransitionMap_generator( - ['../notebooks/temp.npy']), - number_of_agents=3) - -""" -env_renderer = RenderTool(env, gl="QTSVG") -handle = env.get_agent_handles() - -state_size = 105 * 2 -action_size = 4 -n_trials = 15000 -eps = 1. -eps_end = 0.005 -eps_decay = 0.9995 -action_dict = dict() -final_action_dict = dict() -scores_window = deque(maxlen=100) -done_window = deque(maxlen=100) -time_obs = deque(maxlen=2) -scores = [] -dones_list = [] -action_prob = [0] * 4 -agent_obs = [None] * env.get_num_agents() -agent_next_obs = [None] * env.get_num_agents() -agent = Agent(state_size, action_size, "FC", 0) -agent.qnetwork_local.load_state_dict(torch.load('./flatland/baselines/Nets/avoid_checkpoint15000.pth')) - -demo = True - - -def max_lt(seq, val): - """ - Return greatest item in seq for which item < val applies. - None is returned if seq was empty or all items in seq were >= val. - """ - max = 0 - idx = len(seq) - 1 - while idx >= 0: - if seq[idx] < val and seq[idx] >= 0 and seq[idx] > max: - max = seq[idx] - idx -= 1 - return max - - -def min_lt(seq, val): - """ - Return smallest item in seq for which item > val applies. - None is returned if seq was empty or all items in seq were >= val. - """ - min = np.inf - idx = len(seq) - 1 - while idx >= 0: - if seq[idx] > val and seq[idx] < min: - min = seq[idx] - idx -= 1 - return min - - -def norm_obs_clip(obs, clip_min=-1, clip_max=1): - """ - This function returns the difference between min and max value of an observation - :param obs: Observation that should be normalized - :param clip_min: min value where observation will be clipped - :param clip_max: max value where observation will be clipped - :return: returnes normalized and clipped observatoin - """ - max_obs = max(1, max_lt(obs, 1000)) - min_obs = max(0, min_lt(obs, 0)) - if max_obs == min_obs: - return np.clip(np.array(obs) / max_obs, clip_min, clip_max) - norm = np.abs(max_obs - min_obs) - if norm == 0: - norm = 1. - return np.clip((np.array(obs) - min_obs) / norm, clip_min, clip_max) - - -for trials in range(1, n_trials + 1): - - # Reset environment - obs = env.reset() - - final_obs = obs.copy() - final_obs_next = obs.copy() - - for a in range(env.get_num_agents()): - data, distance = env.obs_builder.split_tree(tree=np.array(obs[a]), num_features_per_node=5, current_depth=0) - - data = norm_obs_clip(data) - distance = norm_obs_clip(distance) - obs[a] = np.concatenate((data, distance)) - - for i in range(2): - time_obs.append(obs) - # env.obs_builder.util_print_obs_subtree(tree=obs[0], num_elements_per_node=5) - for a in range(env.get_num_agents()): - agent_obs[a] = np.concatenate((time_obs[0][a], time_obs[1][a])) - - score = 0 - env_done = 0 - # Run episode - for step in range(100): - if demo: - env_renderer.renderEnv(show=True) - # print(step) - # Action - for a in range(env.get_num_agents()): - if demo: - eps = 0 - # action = agent.act(np.array(obs[a]), eps=eps) - action = agent.act(agent_obs[a]) - action_prob[action] += 1 - action_dict.update({a: action}) - - # Environment step - next_obs, all_rewards, done, _ = env.step(action_dict) - for a in range(env.get_num_agents()): - data, distance = env.obs_builder.split_tree(tree=np.array(next_obs[a]), num_features_per_node=5, - current_depth=0) - data = norm_obs_clip(data) - distance = norm_obs_clip(distance) - next_obs[a] = np.concatenate((data, distance)) - - time_obs.append(next_obs) - - # Update replay buffer and train agent - for a in range(env.get_num_agents()): - agent_next_obs[a] = np.concatenate((time_obs[0][a], time_obs[1][a])) - - if done[a]: - final_obs[a] = agent_obs[a].copy() - final_obs_next[a] = agent_next_obs[a].copy() - final_action_dict.update({a: action_dict[a]}) - if not demo and not done[a]: - agent.step(agent_obs[a], action_dict[a], all_rewards[a], agent_next_obs[a], done[a]) - score += all_rewards[a] - - agent_obs = agent_next_obs.copy() - if done['__all__']: - env_done = 1 - for a in range(env.get_num_agents()): - agent.step(final_obs[a], final_action_dict[a], all_rewards[a], final_obs_next[a], done[a]) - break - # Epsilon decay - eps = max(eps_end, eps_decay * eps) # decrease epsilon - - done_window.append(env_done) - scores_window.append(score) # save most recent score - scores.append(np.mean(scores_window)) - dones_list.append((np.mean(done_window))) - - print('\rTraining {} Agents.\t Episode {}\t Average Score: {:.0f}\tDones: {:.2f}%' + - '\tEpsilon: {:.2f} \t Action Probabilities: \t {}'.format( - env.get_num_agents(), - trials, - np.mean(scores_window), - 100 * np.mean(done_window), - eps, action_prob / np.sum(action_prob)), end=" ") - - if trials % 100 == 0: - print( - '\rTraining {} Agents.\t Episode {}\t Average Score: {:.0f}\tDones: {:.2f}%' + - '\tEpsilon: {:.2f} \t Action Probabilities: \t {}'.format( - env.get_num_agents(), - trials, - np.mean(scores_window), - 100 * np.mean(done_window), - eps, - action_prob / np.sum(action_prob))) - torch.save(agent.qnetwork_local.state_dict(), - '../flatland/baselines/Nets/avoid_checkpoint' + str(trials) + '.pth') - action_prob = [1] * 4 diff --git a/flatland/baselines/Nets/avoid_checkpoint15000.pth b/flatland/baselines/Nets/avoid_checkpoint15000.pth deleted file mode 100644 index 14882a37a86085b137f4422b6bba75f387a2d3b5..0000000000000000000000000000000000000000 Binary files a/flatland/baselines/Nets/avoid_checkpoint15000.pth and /dev/null differ diff --git a/flatland/baselines/__init__.py b/flatland/baselines/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/flatland/baselines/dueling_double_dqn.py b/flatland/baselines/dueling_double_dqn.py deleted file mode 100644 index 41a27bf8431df7812f1b4f63e797aa426c17edf1..0000000000000000000000000000000000000000 --- a/flatland/baselines/dueling_double_dqn.py +++ /dev/null @@ -1,200 +0,0 @@ -import copy -import os -import random -from collections import namedtuple, deque, Iterable - -import numpy as np -import torch -import torch.nn.functional as F -import torch.optim as optim - -from flatland.baselines.model import QNetwork, QNetwork2 - -BUFFER_SIZE = int(1e5) # replay buffer size -BATCH_SIZE = 512 # minibatch size -GAMMA = 0.99 # discount factor 0.99 -TAU = 1e-3 # for soft update of target parameters -LR = 0.5e-4 # learning rate 5 -UPDATE_EVERY = 10 # how often to update the network -double_dqn = True # If using double dqn algorithm -input_channels = 5 # Number of Input channels - -device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") -device = torch.device("cpu") -print(device) - - -class Agent: - """Interacts with and learns from the environment.""" - - def __init__(self, state_size, action_size, net_type, seed, double_dqn=True, input_channels=5): - """Initialize an Agent object. - - Params - ====== - state_size (int): dimension of each state - action_size (int): dimension of each action - seed (int): random seed - """ - self.state_size = state_size - self.action_size = action_size - self.seed = random.seed(seed) - self.version = net_type - self.double_dqn = double_dqn - # Q-Network - if self.version == "Conv": - self.qnetwork_local = QNetwork2(state_size, action_size, seed, input_channels).to(device) - self.qnetwork_target = copy.deepcopy(self.qnetwork_local) - else: - self.qnetwork_local = QNetwork(state_size, action_size, seed).to(device) - self.qnetwork_target = copy.deepcopy(self.qnetwork_local) - - self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR) - - # Replay memory - self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed) - # Initialize time step (for updating every UPDATE_EVERY steps) - self.t_step = 0 - - def save(self, filename): - torch.save(self.qnetwork_local.state_dict(), filename + ".local") - torch.save(self.qnetwork_target.state_dict(), filename + ".target") - - def load(self, filename): - if os.path.exists(filename + ".local"): - self.qnetwork_local.load_state_dict(torch.load(filename + ".local")) - if os.path.exists(filename + ".target"): - self.qnetwork_target.load_state_dict(torch.load(filename + ".target")) - - def step(self, state, action, reward, next_state, done, train=True): - # Save experience in replay memory - self.memory.add(state, action, reward, next_state, done) - - # Learn every UPDATE_EVERY time steps. - self.t_step = (self.t_step + 1) % UPDATE_EVERY - if self.t_step == 0: - # If enough samples are available in memory, get random subset and learn - if len(self.memory) > BATCH_SIZE: - experiences = self.memory.sample() - if train: - self.learn(experiences, GAMMA) - - def act(self, state, eps=0.): - """Returns actions for given state as per current policy. - - Params - ====== - state (array_like): current state - eps (float): epsilon, for epsilon-greedy action selection - """ - state = torch.from_numpy(state).float().unsqueeze(0).to(device) - self.qnetwork_local.eval() - with torch.no_grad(): - action_values = self.qnetwork_local(state) - self.qnetwork_local.train() - - # Epsilon-greedy action selection - if random.random() > eps: - return np.argmax(action_values.cpu().data.numpy()) - else: - return random.choice(np.arange(self.action_size)) - - def learn(self, experiences, gamma): - - """Update value parameters using given batch of experience tuples. - - Params - ====== - experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples - gamma (float): discount factor - """ - states, actions, rewards, next_states, dones = experiences - - # Get expected Q values from local model - Q_expected = self.qnetwork_local(states).gather(1, actions) - - if self.double_dqn: - # Double DQN - q_best_action = self.qnetwork_local(next_states).max(1)[1] - Q_targets_next = self.qnetwork_target(next_states).gather(1, q_best_action.unsqueeze(-1)) - else: - # DQN - Q_targets_next = self.qnetwork_target(next_states).detach().max(1)[0].unsqueeze(-1) - - # Compute Q targets for current states - - Q_targets = rewards + (gamma * Q_targets_next * (1 - dones)) - - # Compute loss - loss = F.mse_loss(Q_expected, Q_targets) - # Minimize the loss - self.optimizer.zero_grad() - loss.backward() - self.optimizer.step() - - # ------------------- update target network ------------------- # - self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU) - - def soft_update(self, local_model, target_model, tau): - """Soft update model parameters. - θ_target = τ*θ_local + (1 - τ)*θ_target - - Params - ====== - local_model (PyTorch model): weights will be copied from - target_model (PyTorch model): weights will be copied to - tau (float): interpolation parameter - """ - for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): - target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data) - - -class ReplayBuffer: - """Fixed-size buffer to store experience tuples.""" - - def __init__(self, action_size, buffer_size, batch_size, seed): - """Initialize a ReplayBuffer object. - - Params - ====== - action_size (int): dimension of each action - buffer_size (int): maximum size of buffer - batch_size (int): size of each training batch - seed (int): random seed - """ - self.action_size = action_size - self.memory = deque(maxlen=buffer_size) - self.batch_size = batch_size - self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"]) - self.seed = random.seed(seed) - - def add(self, state, action, reward, next_state, done): - """Add a new experience to memory.""" - e = self.experience(np.expand_dims(state, 0), action, reward, np.expand_dims(next_state, 0), done) - self.memory.append(e) - - def sample(self): - """Randomly sample a batch of experiences from memory.""" - experiences = random.sample(self.memory, k=self.batch_size) - - states = torch.from_numpy(self.__v_stack_impr([e.state for e in experiences if e is not None])) \ - .float().to(device) - actions = torch.from_numpy(self.__v_stack_impr([e.action for e in experiences if e is not None])) \ - .long().to(device) - rewards = torch.from_numpy(self.__v_stack_impr([e.reward for e in experiences if e is not None])) \ - .float().to(device) - next_states = torch.from_numpy(self.__v_stack_impr([e.next_state for e in experiences if e is not None])) \ - .float().to(device) - dones = torch.from_numpy(self.__v_stack_impr([e.done for e in experiences if e is not None]).astype(np.uint8)) \ - .float().to(device) - - return (states, actions, rewards, next_states, dones) - - def __len__(self): - """Return the current size of internal memory.""" - return len(self.memory) - - def __v_stack_impr(self, states): - sub_dim = len(states[0][0]) if isinstance(states[0], Iterable) else 1 - np_states = np.reshape(np.array(states), (len(states), sub_dim)) - return np_states diff --git a/flatland/baselines/model.py b/flatland/baselines/model.py deleted file mode 100644 index 7a5b3d613342a4fba8e2c8f1f45df21381e12684..0000000000000000000000000000000000000000 --- a/flatland/baselines/model.py +++ /dev/null @@ -1,61 +0,0 @@ -import torch.nn as nn -import torch.nn.functional as F - - -class QNetwork(nn.Module): - def __init__(self, state_size, action_size, seed, hidsize1=128, hidsize2=128): - super(QNetwork, self).__init__() - - self.fc1_val = nn.Linear(state_size, hidsize1) - self.fc2_val = nn.Linear(hidsize1, hidsize2) - self.fc3_val = nn.Linear(hidsize2, 1) - - self.fc1_adv = nn.Linear(state_size, hidsize1) - self.fc2_adv = nn.Linear(hidsize1, hidsize2) - self.fc3_adv = nn.Linear(hidsize2, action_size) - - def forward(self, x): - val = F.relu(self.fc1_val(x)) - val = F.relu(self.fc2_val(val)) - val = self.fc3_val(val) - - # advantage calculation - adv = F.relu(self.fc1_adv(x)) - adv = F.relu(self.fc2_adv(adv)) - adv = self.fc3_adv(adv) - return val + adv - adv.mean() - - -class QNetwork2(nn.Module): - def __init__(self, state_size, action_size, seed, input_channels, hidsize1=128, hidsize2=64): - super(QNetwork2, self).__init__() - self.conv1 = nn.Conv2d(input_channels, 16, kernel_size=3, stride=1) - self.bn1 = nn.BatchNorm2d(16) - self.conv2 = nn.Conv2d(16, 32, kernel_size=5, stride=3) - self.bn2 = nn.BatchNorm2d(32) - self.conv3 = nn.Conv2d(32, 64, kernel_size=5, stride=3) - self.bn3 = nn.BatchNorm2d(64) - - self.fc1_val = nn.Linear(6400, hidsize1) - self.fc2_val = nn.Linear(hidsize1, hidsize2) - self.fc3_val = nn.Linear(hidsize2, 1) - - self.fc1_adv = nn.Linear(6400, hidsize1) - self.fc2_adv = nn.Linear(hidsize1, hidsize2) - self.fc3_adv = nn.Linear(hidsize2, action_size) - - def forward(self, x): - x = F.relu(self.conv1(x)) - x = F.relu(self.conv2(x)) - x = F.relu(self.conv3(x)) - - # value function approximation - val = F.relu(self.fc1_val(x.view(x.size(0), -1))) - val = F.relu(self.fc2_val(val)) - val = self.fc3_val(val) - - # advantage calculation - adv = F.relu(self.fc1_adv(x.view(x.size(0), -1))) - adv = F.relu(self.fc2_adv(adv)) - adv = self.fc3_adv(adv) - return val + adv - adv.mean() diff --git a/flatland/envs/observations.py b/flatland/envs/observations.py index 21f9cb45900137e2167ab5811630bd05489d8d3a..3e02050eb4f01889f457a72929578a8eb5c36f29 100644 --- a/flatland/envs/observations.py +++ b/flatland/envs/observations.py @@ -204,7 +204,7 @@ class TreeObsForRailEnv(ObservationBuilder): num_transitions = np.count_nonzero(possible_transitions) # Root node - current position # observation = [0, 0, 0, 0, self.distance_map[handle, position[0], position[1], orientation]] - observation = [0, 0, 0, 0, self.distance_map[(handle, *agent.position,direc agent.direction)]] + observation = [0, 0, 0, 0, self.distance_map[(handle, *agent.position, agent.direction)]] root_observation = observation[:] visited = set() # Start from the current orientation, and see which transitions are available;