diff --git a/examples/temporary_example.py b/examples/temporary_example.py
index ffc9a5de5a4c525a15588f2859477719c83ea9ef..cd6d42de0c86ea39b908d878e23e83efa7fff823 100644
--- a/examples/temporary_example.py
+++ b/examples/temporary_example.py
@@ -4,96 +4,10 @@ import matplotlib.pyplot as plt
 
 from flatland.core.env import RailEnv
 from flatland.utils.rail_env_generator import *
+from flatland.utils.rendertools import *
 
-random.seed(100)
-np.random.seed(100)
-
-
-def pyplot_draw_square(center, size, color):
-    x0 = center[0] - size/2
-    x1 = center[0] + size/2
-    y0 = center[1] - size/2
-    y1 = center[1] + size/2
-    plt.plot([x0, x1, x1, x0, x0], [y0, y0, y1, y1, y0], color=color)
-
-
-def pyplot_render_env(env):
-    cell_size = 10
-
-    plt.figure()
-
-    # Draw cells grid
-    grid_color = [0.95, 0.95, 0.95]
-    for r in range(env.height+1):
-        plt.plot([0, (env.width+1)*cell_size],
-                 [-r*cell_size, -r*cell_size], color=grid_color)
-    for c in range(env.width+1):
-        plt.plot([c*cell_size, c*cell_size],
-                 [0, -(env.height+1)*cell_size], color=grid_color)
-
-    # Draw each cell independently
-    for r in range(env.height):
-        for c in range(env.width):
-            trans_ = env.rail[r][c]
-
-            x0 = c*cell_size
-            x1 = (c+1)*cell_size
-            y0 = -r*cell_size
-            y1 = -(r+1)*cell_size
-
-            coords = [((x0+x1) / 2.0, y0), (x1, (y0+y1) / 2.0),
-                      ((x0+x1) / 2.0, y1), (x0, (y0+y1) / 2.0)]
-
-            for orientation in range(4):
-                from_ori = (orientation + 2) % 4
-                from_ = coords[from_ori]
-
-                # Special Case 7, with a single bit; terminate at center
-                nbits = 0
-                tmp = trans_
-
-                while tmp > 0:
-                    nbits += (tmp & 1)
-                    tmp = tmp >> 1
-
-                if nbits == 1:
-                    from_ = ((x0+x1) / 2.0, (y0+y1) / 2.0)
-
-                moves = env.t_utils.get_transitions_from_orientation(
-                         env.rail[r][c], orientation)
-                for moves_i in range(4):
-                    if moves[moves_i]:
-                        to = coords[moves_i]
-                        plt.plot([from_[0], to[0]], [from_[1], to[1]], 'k')
-
-    # Draw each agent + its orientation + its target
-    cmap = plt.get_cmap('hsv', lut=env.number_of_agents+1)
-    for i in range(env.number_of_agents):
-        pyplot_draw_square((env.agents_position[i][1] * cell_size+cell_size/2,
-                           -env.agents_position[i][0] * cell_size-cell_size/2),
-                           cell_size / 8, cmap(i))
-    for i in range(env.number_of_agents):
-        pyplot_draw_square((env.agents_target[i][1] * cell_size+cell_size/2,
-                           -env.agents_target[i][0] * cell_size-cell_size/2),
-                           cell_size / 3, [c for c in cmap(i)])
-
-        # orientation is a line connecting the center of the cell to the side
-        # of the square of the agent
-        new_position = env._new_position(env.agents_position[i],
-                                         env.agents_direction[i])
-        new_position = ((new_position[0]+env.agents_position[i][0])/2 *
-                        cell_size,
-                        (new_position[1]+env.agents_position[i][1])/2 *
-                        cell_size)
-
-        plt.plot([env.agents_position[i][1] * cell_size + cell_size/2,
-                 new_position[1] + cell_size/2],
-                 [-env.agents_position[i][0] * cell_size-cell_size/2,
-                 -new_position[0] - cell_size/2], color=cmap(i), linewidth=2.0)
-
-    plt.xlim([0, env.width * cell_size])
-    plt.ylim([-env.height * cell_size, 0])
-    plt.show()
+random.seed(1)
+np.random.seed(1)
 
 
 # Example generate a random rail
@@ -102,7 +16,8 @@ rail = generate_random_rail(20, 20)
 env = RailEnv(rail, number_of_agents=10)
 env.reset()
 
-pyplot_render_env(env)
+env_renderer = RenderTool(env)
+env_renderer.renderEnv()
 
 
 # Example generate a rail given a manual specification,
@@ -121,7 +36,8 @@ env.agents_position = [[1, 4]]
 env.agents_target = [[1, 1]]
 env.agents_direction = [1]
 
-pyplot_render_env(env)
+env_renderer = RenderTool(env)
+env_renderer.renderEnv()
 
 
 print("Manual control: s=perform step, q=quit, [agent id] [1-2-3 action] \
@@ -148,4 +64,4 @@ for step in range(100):
             i = i+1
         i += 1
 
-    pyplot_render_env(env)
+    env_renderer.renderEnv()
diff --git a/flatland/utils/rendertools.py b/flatland/utils/rendertools.py
index 8a8c64eabc5aaf4be0e02381f1c41a4493bdf6bd..1a897d819c8579189d3752adb12436fce5845318 100644
--- a/flatland/utils/rendertools.py
+++ b/flatland/utils/rendertools.py
@@ -413,7 +413,13 @@ class RenderTool(object):
         plt.ylim([-env.height * cell_size, 0])
 
         plt.xticks(np.linspace(0, env.width * cell_size, env.width+1))
-        plt.yticks(np.linspace(-env.height * cell_size, 0, env.height+1))
+        plt.yticks(np.linspace(-env.height * cell_size, 0, env.height+1),
+                   np.abs(np.linspace(-env.height * cell_size,
+                          0, env.height+1)))
+
+        plt.xlim([0, env.width * cell_size])
+        plt.ylim([-env.height * cell_size, 0])
+        plt.show()
 
     def _draw_square(self, center, size, color):
         x0 = center[0]-size/2