diff --git a/examples/training_example.py b/examples/training_example.py
index d6f2c0268a9d7aece260b8e0f97ae1ff68d28bb6..ee97c7e4c90dc15018d6d87c5b2293455075c5f0 100644
--- a/examples/training_example.py
+++ b/examples/training_example.py
@@ -12,7 +12,6 @@ env = RailEnv(width=15,
               rail_generator=complex_rail_generator(nr_start_goal=10, nr_extra=10, min_dist=10, max_dist=99999, seed=0),
               number_of_agents=5)
 
-
 # Import your own Agent or use RLlib to train agents on Flatland
 # As an example we use a random agent here
 
@@ -39,14 +38,17 @@ class RandomAgent:
         """
         return
 
-    def save(self):
+    def save(self, filename):
         # Store the current policy
         return
 
+    def load(self,filename):
+        # Load a policy
+        return
 
 # Initialize the agent with the parameters corresponding to the environment and observation_builder
 agent = RandomAgent(218, 4)
-n_trials = 1000
+n_trials = 5
 
 # Empty dictionary for all agent action
 action_dict = dict()
@@ -71,11 +73,12 @@ for trials in range(1, n_trials + 1):
         next_obs, all_rewards, done, _ = env.step(action_dict)
 
         # Update replay buffer and train agent
-        agent.step((obs[a], action_dict[a], all_rewards[a], next_obs[a], done[a]))
-        score += all_rewards[a]
+        for a in range(env.get_num_agents()):
+            agent.step((obs[a], action_dict[a], all_rewards[a], next_obs[a], done[a]))
+            score += all_rewards[a]
 
         obs = next_obs.copy()
         if done['__all__']:
             break
-    print('Episode Nr. {}'.format(trials))
+    print('Episode Nr. {}\t Score = {}'.format(trials,score))