From 2eace8df607bf89e3b9f6099a481c9125d3d21d8 Mon Sep 17 00:00:00 2001 From: MLErik <baerenjesus@gmail.com> Date: Thu, 31 Oct 2019 11:50:35 -0400 Subject: [PATCH] Fixing comment bu mohanty, introducing enum --- examples/introduction_flatland_2_1.py | 8 +++++--- 1 file changed, 5 insertions(+), 3 deletions(-) diff --git a/examples/introduction_flatland_2_1.py b/examples/introduction_flatland_2_1.py index 4cdf63b0..cf6b69dc 100644 --- a/examples/introduction_flatland_2_1.py +++ b/examples/introduction_flatland_2_1.py @@ -6,6 +6,7 @@ import numpy as np from flatland.envs.observations import GlobalObsForRailEnv # First of all we import the Flatland rail environment from flatland.envs.rail_env import RailEnv +from flatland.envs.rail_env import RailEnvActions from flatland.envs.rail_generators import sparse_rail_generator from flatland.envs.schedule_generators import sparse_schedule_generator # We also include a renderer because we want to visualize what is going on in the environment @@ -27,8 +28,8 @@ from flatland.utils.rendertools import RenderTool, AgentRenderVariant # The railway infrastructure can be build using any of the provided generators in env/rail_generators.py # Here we use the sparse_rail_generator with the following parameters -width = 16*7 # With of map -height = 9*7 # Height of map +width = 16 * 7 # With of map +height = 9 * 7 # Height of map nr_trains = 20 # Number of trains that have an assigned task in the env cities_in_map = 20 # Number of cities where agents can start or end seed = 14 # Random seed @@ -109,7 +110,8 @@ class RandomAgent: :param state: input is the observation of the agent :return: returns an action """ - return np.random.choice([1, 2, 3, 4]) # [Left, Forward, Right, Stop] + return np.random.choice([RailEnvActions.MOVE_FORWARD, RailEnvActions.MOVE_RIGHT, RailEnvActions.MOVE_LEFT, + RailEnvActions.STOP_MOVING]) def step(self, memories): """ -- GitLab