diff --git a/configs/reppoints/README.md b/configs/reppoints/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..2937113ce4d0403d52ca218d24de284aea0cbb3f
--- /dev/null
+++ b/configs/reppoints/README.md
@@ -0,0 +1,62 @@
+# RepPoints: Point Set Representation for Object Detection
+
+By [Ze Yang](https://yangze.tech/), [Shaohui Liu](http://b1ueber2y.me/), and [Han Hu](https://ancientmooner.github.io/).
+
+We provide code support and configuration files to reproduce the results in the paper for
+["RepPoints: Point Set Representation for Object Detection"](https://arxiv.org/abs/1904.11490) on COCO object detection. 
+
+## Introduction
+
+**RepPoints**, initially described in [arXiv](https://arxiv.org/abs/1904.11490), is a new representation method for visual objects, on which visual understanding tasks are typically centered. Visual object representation, aiming at both geometric description and appearance feature extraction, is conventionally achieved by `bounding box + RoIPool (RoIAlign)`. The bounding box representation is convenient to use; however, it provides only a rectangular localization of objects that lacks geometric precision and may consequently degrade feature quality. Our new representation, RepPoints, models objects by a `point set` instead of a `bounding box`, which learns to adaptively position themselves over an object in a manner that circumscribes the object’s `spatial extent` and enables `semantically aligned feature extraction`. This richer and more flexible representation maintains the convenience of bounding boxes while facilitating various visual understanding applications. This repo demonstrated the effectiveness of RepPoints for COCO object detection.
+
+Another feature of this repo is the demonstration of an `anchor-free detector`, which can be as effective as state-of-the-art anchor-based detection methods. The anchor-free detector can utilize either `bounding box` or `RepPoints` as the basic object representation.
+
+<div align="center">
+  <img src="reppoints.png" width="400px" />
+  <p>Learning RepPoints in Object Detection.</p>
+</div>
+
+## Citing RepPoints
+
+```
+@inproceedings{yang2019reppoints,
+  title={RepPoints: Point Set Representation for Object Detection},
+  author={Yang, Ze and Liu, Shaohui and Hu, Han and Wang, Liwei and Lin, Stephen},
+  booktitle={The IEEE International Conference on Computer Vision (ICCV)},
+  month={Oct},
+  year={2019}
+}
+```
+
+## Results and models
+
+The results on COCO 2017val are shown in the table below.
+
+| Method | Backbone | Anchor | convert func | Lr schd | box AP | Download |
+| :----: | :------: | :-------: | :------: | :-----: | :----: | :------: |
+| BBox | R-50-FPN | single | -    | 1x      | 36.3|[model](https://drive.google.com/open?id=1TaVAFGZP2i7RwtlQjy3LBH1WI-YRH774) |
+| BBox | R-50-FPN | none     | -    | 1x      | 37.3| [model](https://drive.google.com/open?id=1hpfu-I7gtZnIb0NU2WvUvaZz_dm-THuZ) |
+| RepPoints | R-50-FPN | none     | partial MinMax | 1x      | 38.1| [model](https://drive.google.com/open?id=11zFtdKH-QGz_zH7vlcIih6FQAjV84CWc) |
+| RepPoints | R-50-FPN | none     | MinMax | 1x      | 38.2| [model](https://drive.google.com/open?id=1Cg9818dpkL-9qjmYdkhrY_BRiQFjV4xu)  |
+| RepPoints | R-50-FPN | none     | moment | 1x      | 38.2| [model](https://drive.google.com/open?id=1rQg-lE-5nuqO1bt6okeYkti4Q-EaBsu_) |
+| RepPoints | R-50-FPN | none     | moment | 2x      | 38.6| [model](https://drive.google.com/open?id=1TfR-5geVviKhRoXL9JP6cG3fkN2itbBU) |
+| RepPoints | R-50-FPN | none     | moment | 2x (ms train)   | 40.8| [model](https://drive.google.com/open?id=1oaHTIaP51oB5HJ6GWV3WYK19lMm9iJO6) |
+| RepPoints | R-50-FPN | none     | moment | 2x (ms train&ms test)   | 42.2|          |
+| RepPoints | R-101-FPN | none   | moment | 2x   | 40.3| [model](https://drive.google.com/open?id=1BAmGeUQ_zVQi2u7rgOuPQem2EjXDLgWm) |
+| RepPoints | R-101-FPN | none   | moment | 2x (ms train)   | 42.3| [model](https://drive.google.com/open?id=14Lf0p4fXElXaxFu8stk3hek3bY8tNENX) |
+| RepPoints | R-101-FPN | none   | moment | 2x (ms train&ms test)   | 44.1|          |
+| RepPoints | R-101-FPN-DCN | none   | moment | 2x   | 43.0| [model](https://drive.google.com/open?id=1hpptxpb4QtNuB-HnV5wHbDltPHhlYq4z) |
+| RepPoints | R-101-FPN-DCN | none   | moment | 2x (ms train)   | 44.8| [model](https://drive.google.com/open?id=1fsTckK99HYjOURwcFeHfy5JRRtsCajfX) |
+| RepPoints | R-101-FPN-DCN | none   | moment | 2x (ms train&ms test)   | 46.4|          |
+| RepPoints | X-101-FPN-DCN | none   | moment | 2x   | 44.5| [model](https://drive.google.com/open?id=1Y8vqaqU88-FEqqwl6Zb9exD5O246yrMR) |
+| RepPoints | X-101-FPN-DCN | none   | moment | 2x (ms train)   | 45.6| [model](https://drive.google.com/open?id=1nr9gcVWxzeakbfPC6ON9yvKOuLzj_RrJ) |
+| RepPoints | X-101-FPN-DCN | none   | moment | 2x (ms train&ms test)   | 46.8|          |
+
+**Notes:**
+
+- `R-xx`, `X-xx` denote the ResNet and ResNeXt architectures, respectively. 
+- `DCN` denotes replacing 3x3 conv with the 3x3 deformable convolution in `c3-c5` stages of backbone.
+- `none` in the `anchor` column means 2-d `center point` (x,y) is used to represent the initial object hypothesis. `single` denotes one 4-d anchor box (x,y,w,h) with IoU based label assign criterion is adopted. 
+- `moment`, `partial MinMax`, `MinMax` in the `convert func` column are three functions to convert a point set to a pseudo box.
+- `ms` denotes multi-scale training or multi-scale test.
+- Note the results here are slightly different from those reported in the paper, due to framework change. While the original paper uses an [MXNet](https://mxnet.apache.org/) implementation, we re-implement the method in [PyTorch](https://pytorch.org/) based on mmdetection.
diff --git a/configs/reppoints/bbox_r50_grid_center_fpn_1x.py b/configs/reppoints/bbox_r50_grid_center_fpn_1x.py
new file mode 100644
index 0000000000000000000000000000000000000000..d2ab61d0a2d89554aaaf5d43ce216e31d4bcd8ab
--- /dev/null
+++ b/configs/reppoints/bbox_r50_grid_center_fpn_1x.py
@@ -0,0 +1,143 @@
+# model settings
+norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
+
+model = dict(
+    type='RepPointsDetector',
+    pretrained='torchvision://resnet50',
+    backbone=dict(
+        type='ResNet',
+        depth=50,
+        num_stages=4,
+        out_indices=(0, 1, 2, 3),
+        frozen_stages=1,
+        style='pytorch'),
+    neck=dict(
+        type='FPN',
+        in_channels=[256, 512, 1024, 2048],
+        out_channels=256,
+        start_level=1,
+        add_extra_convs=True,
+        num_outs=5,
+        norm_cfg=norm_cfg),
+    bbox_head=dict(
+        type='RepPointsHead',
+        num_classes=81,
+        in_channels=256,
+        feat_channels=256,
+        point_feat_channels=256,
+        stacked_convs=3,
+        num_points=9,
+        gradient_mul=0.1,
+        point_strides=[8, 16, 32, 64, 128],
+        point_base_scale=4,
+        norm_cfg=norm_cfg,
+        loss_cls=dict(
+            type='FocalLoss',
+            use_sigmoid=True,
+            gamma=2.0,
+            alpha=0.25,
+            loss_weight=1.0),
+        loss_bbox_init=dict(type='SmoothL1Loss', beta=0.11, loss_weight=0.5),
+        loss_bbox_refine=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0),
+        transform_method='minmax',
+        use_grid_points=True))
+# training and testing settings
+train_cfg = dict(
+    init=dict(
+        assigner=dict(type='PointAssigner', scale=4, pos_num=1),
+        allowed_border=-1,
+        pos_weight=-1,
+        debug=False),
+    refine=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.5,
+            neg_iou_thr=0.4,
+            min_pos_iou=0,
+            ignore_iof_thr=-1),
+        allowed_border=-1,
+        pos_weight=-1,
+        debug=False))
+test_cfg = dict(
+    nms_pre=1000,
+    min_bbox_size=0,
+    score_thr=0.05,
+    nms=dict(type='nms', iou_thr=0.5),
+    max_per_img=100)
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+    dict(type='LoadImageFromFile'),
+    dict(type='LoadAnnotations', with_bbox=True),
+    dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+    dict(type='RandomFlip', flip_ratio=0.5),
+    dict(type='Normalize', **img_norm_cfg),
+    dict(type='Pad', size_divisor=32),
+    dict(type='DefaultFormatBundle'),
+    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+    dict(type='LoadImageFromFile'),
+    dict(
+        type='MultiScaleFlipAug',
+        img_scale=(1333, 800),
+        flip=False,
+        transforms=[
+            dict(type='Resize', keep_ratio=True),
+            dict(type='RandomFlip'),
+            dict(type='Normalize', **img_norm_cfg),
+            dict(type='Pad', size_divisor=32),
+            dict(type='ImageToTensor', keys=['img']),
+            dict(type='Collect', keys=['img']),
+        ])
+]
+data = dict(
+    imgs_per_gpu=2,
+    workers_per_gpu=2,
+    train=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_train2017.json',
+        img_prefix=data_root + 'train2017/',
+        pipeline=train_pipeline),
+    val=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        pipeline=test_pipeline),
+    test=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        pipeline=test_pipeline))
+# optimizer
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+    policy='step',
+    warmup='linear',
+    warmup_iters=500,
+    warmup_ratio=1.0 / 3,
+    step=[8, 11])
+checkpoint_config = dict(interval=1)
+# yapf:disable
+log_config = dict(
+    interval=50,
+    hooks=[
+        dict(type='TextLoggerHook'),
+        # dict(type='TensorboardLoggerHook')
+    ])
+# yapf:enable
+# runtime settings
+total_epochs = 12
+device_ids = range(8)
+dist_params = dict(backend='nccl')
+log_level = 'INFO'
+work_dir = './work_dirs/bbox_r50_grid_center_fpn_1x'
+load_from = None
+resume_from = None
+auto_resume = True
+workflow = [('train', 1)]
diff --git a/configs/reppoints/bbox_r50_grid_fpn_1x.py b/configs/reppoints/bbox_r50_grid_fpn_1x.py
new file mode 100644
index 0000000000000000000000000000000000000000..79e3c76ff4b927eca34ed3489d17f14bbe11f708
--- /dev/null
+++ b/configs/reppoints/bbox_r50_grid_fpn_1x.py
@@ -0,0 +1,148 @@
+# model settings
+norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
+
+model = dict(
+    type='RepPointsDetector',
+    pretrained='torchvision://resnet50',
+    backbone=dict(
+        type='ResNet',
+        depth=50,
+        num_stages=4,
+        out_indices=(0, 1, 2, 3),
+        frozen_stages=1,
+        style='pytorch'),
+    neck=dict(
+        type='FPN',
+        in_channels=[256, 512, 1024, 2048],
+        out_channels=256,
+        start_level=1,
+        add_extra_convs=True,
+        num_outs=5,
+        norm_cfg=norm_cfg),
+    bbox_head=dict(
+        type='RepPointsHead',
+        num_classes=81,
+        in_channels=256,
+        feat_channels=256,
+        point_feat_channels=256,
+        stacked_convs=3,
+        num_points=9,
+        gradient_mul=0.1,
+        point_strides=[8, 16, 32, 64, 128],
+        point_base_scale=4,
+        norm_cfg=norm_cfg,
+        loss_cls=dict(
+            type='FocalLoss',
+            use_sigmoid=True,
+            gamma=2.0,
+            alpha=0.25,
+            loss_weight=1.0),
+        loss_bbox_init=dict(type='SmoothL1Loss', beta=0.11, loss_weight=0.5),
+        loss_bbox_refine=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0),
+        transform_method='minmax',
+        use_grid_points=True))
+# training and testing settings
+train_cfg = dict(
+    init=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.5,
+            neg_iou_thr=0.4,
+            min_pos_iou=0,
+            ignore_iof_thr=-1),
+        allowed_border=-1,
+        pos_weight=-1,
+        debug=False),
+    refine=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.5,
+            neg_iou_thr=0.4,
+            min_pos_iou=0,
+            ignore_iof_thr=-1),
+        allowed_border=-1,
+        pos_weight=-1,
+        debug=False))
+test_cfg = dict(
+    nms_pre=1000,
+    min_bbox_size=0,
+    score_thr=0.05,
+    nms=dict(type='nms', iou_thr=0.5),
+    max_per_img=100)
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+    dict(type='LoadImageFromFile'),
+    dict(type='LoadAnnotations', with_bbox=True),
+    dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+    dict(type='RandomFlip', flip_ratio=0.5),
+    dict(type='Normalize', **img_norm_cfg),
+    dict(type='Pad', size_divisor=32),
+    dict(type='DefaultFormatBundle'),
+    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+    dict(type='LoadImageFromFile'),
+    dict(
+        type='MultiScaleFlipAug',
+        img_scale=(1333, 800),
+        flip=False,
+        transforms=[
+            dict(type='Resize', keep_ratio=True),
+            dict(type='RandomFlip'),
+            dict(type='Normalize', **img_norm_cfg),
+            dict(type='Pad', size_divisor=32),
+            dict(type='ImageToTensor', keys=['img']),
+            dict(type='Collect', keys=['img']),
+        ])
+]
+data = dict(
+    imgs_per_gpu=2,
+    workers_per_gpu=2,
+    train=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_train2017.json',
+        img_prefix=data_root + 'train2017/',
+        pipeline=train_pipeline),
+    val=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        pipeline=test_pipeline),
+    test=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        pipeline=test_pipeline))
+# optimizer
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+    policy='step',
+    warmup='linear',
+    warmup_iters=500,
+    warmup_ratio=1.0 / 3,
+    step=[8, 11])
+checkpoint_config = dict(interval=1)
+# yapf:disable
+log_config = dict(
+    interval=50,
+    hooks=[
+        dict(type='TextLoggerHook'),
+        # dict(type='TensorboardLoggerHook')
+    ])
+# yapf:enable
+# runtime settings
+total_epochs = 12
+device_ids = range(8)
+dist_params = dict(backend='nccl')
+log_level = 'INFO'
+work_dir = './work_dirs/bbox_r50_grid_fpn_1x'
+load_from = None
+resume_from = None
+auto_resume = True
+workflow = [('train', 1)]
diff --git a/configs/reppoints/reppoints.png b/configs/reppoints/reppoints.png
new file mode 100644
index 0000000000000000000000000000000000000000..a9306d9ba6c659a670822213bf198099f9e125b1
Binary files /dev/null and b/configs/reppoints/reppoints.png differ
diff --git a/configs/reppoints/reppoints_minmax_r50_fpn_1x.py b/configs/reppoints/reppoints_minmax_r50_fpn_1x.py
new file mode 100644
index 0000000000000000000000000000000000000000..0103beb937ab80b9b5a6b875f050c475a13f1b36
--- /dev/null
+++ b/configs/reppoints/reppoints_minmax_r50_fpn_1x.py
@@ -0,0 +1,142 @@
+# model settings
+norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
+
+model = dict(
+    type='RepPointsDetector',
+    pretrained='torchvision://resnet50',
+    backbone=dict(
+        type='ResNet',
+        depth=50,
+        num_stages=4,
+        out_indices=(0, 1, 2, 3),
+        frozen_stages=1,
+        style='pytorch'),
+    neck=dict(
+        type='FPN',
+        in_channels=[256, 512, 1024, 2048],
+        out_channels=256,
+        start_level=1,
+        add_extra_convs=True,
+        num_outs=5,
+        norm_cfg=norm_cfg),
+    bbox_head=dict(
+        type='RepPointsHead',
+        num_classes=81,
+        in_channels=256,
+        feat_channels=256,
+        point_feat_channels=256,
+        stacked_convs=3,
+        num_points=9,
+        gradient_mul=0.1,
+        point_strides=[8, 16, 32, 64, 128],
+        point_base_scale=4,
+        norm_cfg=norm_cfg,
+        loss_cls=dict(
+            type='FocalLoss',
+            use_sigmoid=True,
+            gamma=2.0,
+            alpha=0.25,
+            loss_weight=1.0),
+        loss_bbox_init=dict(type='SmoothL1Loss', beta=0.11, loss_weight=0.5),
+        loss_bbox_refine=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0),
+        transform_method='minmax'))
+# training and testing settings
+train_cfg = dict(
+    init=dict(
+        assigner=dict(type='PointAssigner', scale=4, pos_num=1),
+        allowed_border=-1,
+        pos_weight=-1,
+        debug=False),
+    refine=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.5,
+            neg_iou_thr=0.4,
+            min_pos_iou=0,
+            ignore_iof_thr=-1),
+        allowed_border=-1,
+        pos_weight=-1,
+        debug=False))
+test_cfg = dict(
+    nms_pre=1000,
+    min_bbox_size=0,
+    score_thr=0.05,
+    nms=dict(type='nms', iou_thr=0.5),
+    max_per_img=100)
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+    dict(type='LoadImageFromFile'),
+    dict(type='LoadAnnotations', with_bbox=True),
+    dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+    dict(type='RandomFlip', flip_ratio=0.5),
+    dict(type='Normalize', **img_norm_cfg),
+    dict(type='Pad', size_divisor=32),
+    dict(type='DefaultFormatBundle'),
+    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+    dict(type='LoadImageFromFile'),
+    dict(
+        type='MultiScaleFlipAug',
+        img_scale=(1333, 800),
+        flip=False,
+        transforms=[
+            dict(type='Resize', keep_ratio=True),
+            dict(type='RandomFlip'),
+            dict(type='Normalize', **img_norm_cfg),
+            dict(type='Pad', size_divisor=32),
+            dict(type='ImageToTensor', keys=['img']),
+            dict(type='Collect', keys=['img']),
+        ])
+]
+data = dict(
+    imgs_per_gpu=2,
+    workers_per_gpu=2,
+    train=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_train2017.json',
+        img_prefix=data_root + 'train2017/',
+        pipeline=train_pipeline),
+    val=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        pipeline=test_pipeline),
+    test=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        pipeline=test_pipeline))
+# optimizer
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+    policy='step',
+    warmup='linear',
+    warmup_iters=500,
+    warmup_ratio=1.0 / 3,
+    step=[8, 11])
+checkpoint_config = dict(interval=1)
+# yapf:disable
+log_config = dict(
+    interval=50,
+    hooks=[
+        dict(type='TextLoggerHook'),
+        # dict(type='TensorboardLoggerHook')
+    ])
+# yapf:enable
+# runtime settings
+total_epochs = 12
+device_ids = range(8)
+dist_params = dict(backend='nccl')
+log_level = 'INFO'
+work_dir = './work_dirs/reppoints_minmax_r50_fpn_1x'
+load_from = None
+resume_from = None
+auto_resume = True
+workflow = [('train', 1)]
diff --git a/configs/reppoints/reppoints_moment_r101_dcn_fpn_2x.py b/configs/reppoints/reppoints_moment_r101_dcn_fpn_2x.py
new file mode 100644
index 0000000000000000000000000000000000000000..864cec03d1ebf8c748f8d2d8d43c2e396f49c209
--- /dev/null
+++ b/configs/reppoints/reppoints_moment_r101_dcn_fpn_2x.py
@@ -0,0 +1,145 @@
+# model settings
+norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
+
+model = dict(
+    type='RepPointsDetector',
+    pretrained='torchvision://resnet101',
+    backbone=dict(
+        type='ResNet',
+        depth=101,
+        num_stages=4,
+        out_indices=(0, 1, 2, 3),
+        frozen_stages=1,
+        style='pytorch',
+        dcn=dict(
+            modulated=False, deformable_groups=1, fallback_on_stride=False),
+        stage_with_dcn=(False, True, True, True)),
+    neck=dict(
+        type='FPN',
+        in_channels=[256, 512, 1024, 2048],
+        out_channels=256,
+        start_level=1,
+        add_extra_convs=True,
+        num_outs=5,
+        norm_cfg=norm_cfg),
+    bbox_head=dict(
+        type='RepPointsHead',
+        num_classes=81,
+        in_channels=256,
+        feat_channels=256,
+        point_feat_channels=256,
+        stacked_convs=3,
+        num_points=9,
+        gradient_mul=0.1,
+        point_strides=[8, 16, 32, 64, 128],
+        point_base_scale=4,
+        norm_cfg=norm_cfg,
+        loss_cls=dict(
+            type='FocalLoss',
+            use_sigmoid=True,
+            gamma=2.0,
+            alpha=0.25,
+            loss_weight=1.0),
+        loss_bbox_init=dict(type='SmoothL1Loss', beta=0.11, loss_weight=0.5),
+        loss_bbox_refine=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0),
+        transform_method='moment'))
+# training and testing settings
+train_cfg = dict(
+    init=dict(
+        assigner=dict(type='PointAssigner', scale=4, pos_num=1),
+        allowed_border=-1,
+        pos_weight=-1,
+        debug=False),
+    refine=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.5,
+            neg_iou_thr=0.4,
+            min_pos_iou=0,
+            ignore_iof_thr=-1),
+        allowed_border=-1,
+        pos_weight=-1,
+        debug=False))
+test_cfg = dict(
+    nms_pre=1000,
+    min_bbox_size=0,
+    score_thr=0.05,
+    nms=dict(type='nms', iou_thr=0.5),
+    max_per_img=100)
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+    dict(type='LoadImageFromFile'),
+    dict(type='LoadAnnotations', with_bbox=True),
+    dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+    dict(type='RandomFlip', flip_ratio=0.5),
+    dict(type='Normalize', **img_norm_cfg),
+    dict(type='Pad', size_divisor=32),
+    dict(type='DefaultFormatBundle'),
+    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+    dict(type='LoadImageFromFile'),
+    dict(
+        type='MultiScaleFlipAug',
+        img_scale=(1333, 800),
+        flip=False,
+        transforms=[
+            dict(type='Resize', keep_ratio=True),
+            dict(type='RandomFlip'),
+            dict(type='Normalize', **img_norm_cfg),
+            dict(type='Pad', size_divisor=32),
+            dict(type='ImageToTensor', keys=['img']),
+            dict(type='Collect', keys=['img']),
+        ])
+]
+data = dict(
+    imgs_per_gpu=2,
+    workers_per_gpu=2,
+    train=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_train2017.json',
+        img_prefix=data_root + 'train2017/',
+        pipeline=train_pipeline),
+    val=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        pipeline=test_pipeline),
+    test=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        pipeline=test_pipeline))
+# optimizer
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+    policy='step',
+    warmup='linear',
+    warmup_iters=500,
+    warmup_ratio=1.0 / 3,
+    step=[16, 22])
+checkpoint_config = dict(interval=1)
+# yapf:disable
+log_config = dict(
+    interval=50,
+    hooks=[
+        dict(type='TextLoggerHook'),
+        # dict(type='TensorboardLoggerHook')
+    ])
+# yapf:enable
+# runtime settings
+total_epochs = 24
+device_ids = range(8)
+dist_params = dict(backend='nccl')
+log_level = 'INFO'
+work_dir = './work_dirs/reppoints_moment_r101_dcn_fpn_2x'
+load_from = None
+resume_from = None
+auto_resume = True
+workflow = [('train', 1)]
diff --git a/configs/reppoints/reppoints_moment_r101_dcn_fpn_2x_mt.py b/configs/reppoints/reppoints_moment_r101_dcn_fpn_2x_mt.py
new file mode 100644
index 0000000000000000000000000000000000000000..ac6d93a9cb00b5f1ddd51dcaaac58c7fea432719
--- /dev/null
+++ b/configs/reppoints/reppoints_moment_r101_dcn_fpn_2x_mt.py
@@ -0,0 +1,149 @@
+# model settings
+norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
+
+model = dict(
+    type='RepPointsDetector',
+    pretrained='torchvision://resnet101',
+    backbone=dict(
+        type='ResNet',
+        depth=101,
+        num_stages=4,
+        out_indices=(0, 1, 2, 3),
+        frozen_stages=1,
+        style='pytorch',
+        dcn=dict(
+            modulated=False, deformable_groups=1, fallback_on_stride=False),
+        stage_with_dcn=(False, True, True, True)),
+    neck=dict(
+        type='FPN',
+        in_channels=[256, 512, 1024, 2048],
+        out_channels=256,
+        start_level=1,
+        add_extra_convs=True,
+        num_outs=5,
+        norm_cfg=norm_cfg),
+    bbox_head=dict(
+        type='RepPointsHead',
+        num_classes=81,
+        in_channels=256,
+        feat_channels=256,
+        point_feat_channels=256,
+        stacked_convs=3,
+        num_points=9,
+        gradient_mul=0.1,
+        point_strides=[8, 16, 32, 64, 128],
+        point_base_scale=4,
+        norm_cfg=norm_cfg,
+        loss_cls=dict(
+            type='FocalLoss',
+            use_sigmoid=True,
+            gamma=2.0,
+            alpha=0.25,
+            loss_weight=1.0),
+        loss_bbox_init=dict(type='SmoothL1Loss', beta=0.11, loss_weight=0.5),
+        loss_bbox_refine=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0),
+        transform_method='moment'))
+# training and testing settings
+train_cfg = dict(
+    init=dict(
+        assigner=dict(type='PointAssigner', scale=4, pos_num=1),
+        allowed_border=-1,
+        pos_weight=-1,
+        debug=False),
+    refine=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.5,
+            neg_iou_thr=0.4,
+            min_pos_iou=0,
+            ignore_iof_thr=-1),
+        allowed_border=-1,
+        pos_weight=-1,
+        debug=False))
+test_cfg = dict(
+    nms_pre=1000,
+    min_bbox_size=0,
+    score_thr=0.05,
+    nms=dict(type='nms', iou_thr=0.5),
+    max_per_img=100)
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+    dict(type='LoadImageFromFile'),
+    dict(type='LoadAnnotations', with_bbox=True),
+    dict(
+        type='Resize',
+        img_scale=[(1333, 480), (1333, 960)],
+        keep_ratio=True,
+        multiscale_mode='range'),
+    dict(type='RandomFlip', flip_ratio=0.5),
+    dict(type='Normalize', **img_norm_cfg),
+    dict(type='Pad', size_divisor=32),
+    dict(type='DefaultFormatBundle'),
+    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+    dict(type='LoadImageFromFile'),
+    dict(
+        type='MultiScaleFlipAug',
+        img_scale=(1333, 800),
+        flip=False,
+        transforms=[
+            dict(type='Resize', keep_ratio=True),
+            dict(type='RandomFlip'),
+            dict(type='Normalize', **img_norm_cfg),
+            dict(type='Pad', size_divisor=32),
+            dict(type='ImageToTensor', keys=['img']),
+            dict(type='Collect', keys=['img']),
+        ])
+]
+data = dict(
+    imgs_per_gpu=2,
+    workers_per_gpu=2,
+    train=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_train2017.json',
+        img_prefix=data_root + 'train2017/',
+        pipeline=train_pipeline),
+    val=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        pipeline=test_pipeline),
+    test=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        pipeline=test_pipeline))
+# optimizer
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+    policy='step',
+    warmup='linear',
+    warmup_iters=500,
+    warmup_ratio=1.0 / 3,
+    step=[16, 22])
+checkpoint_config = dict(interval=1)
+# yapf:disable
+log_config = dict(
+    interval=50,
+    hooks=[
+        dict(type='TextLoggerHook'),
+        # dict(type='TensorboardLoggerHook')
+    ])
+# yapf:enable
+# runtime settings
+total_epochs = 24
+device_ids = range(8)
+dist_params = dict(backend='nccl')
+log_level = 'INFO'
+work_dir = './work_dirs/reppoints_moment_r101_dcn_fpn_2x_mt'
+load_from = None
+resume_from = None
+auto_resume = True
+workflow = [('train', 1)]
diff --git a/configs/reppoints/reppoints_moment_r101_fpn_2x.py b/configs/reppoints/reppoints_moment_r101_fpn_2x.py
new file mode 100644
index 0000000000000000000000000000000000000000..a4732a279bd43fe0f158aaf753ff1e1d910c65ec
--- /dev/null
+++ b/configs/reppoints/reppoints_moment_r101_fpn_2x.py
@@ -0,0 +1,142 @@
+# model settings
+norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
+
+model = dict(
+    type='RepPointsDetector',
+    pretrained='torchvision://resnet101',
+    backbone=dict(
+        type='ResNet',
+        depth=101,
+        num_stages=4,
+        out_indices=(0, 1, 2, 3),
+        frozen_stages=1,
+        style='pytorch'),
+    neck=dict(
+        type='FPN',
+        in_channels=[256, 512, 1024, 2048],
+        out_channels=256,
+        start_level=1,
+        add_extra_convs=True,
+        num_outs=5,
+        norm_cfg=norm_cfg),
+    bbox_head=dict(
+        type='RepPointsHead',
+        num_classes=81,
+        in_channels=256,
+        feat_channels=256,
+        point_feat_channels=256,
+        stacked_convs=3,
+        num_points=9,
+        gradient_mul=0.1,
+        point_strides=[8, 16, 32, 64, 128],
+        point_base_scale=4,
+        norm_cfg=norm_cfg,
+        loss_cls=dict(
+            type='FocalLoss',
+            use_sigmoid=True,
+            gamma=2.0,
+            alpha=0.25,
+            loss_weight=1.0),
+        loss_bbox_init=dict(type='SmoothL1Loss', beta=0.11, loss_weight=0.5),
+        loss_bbox_refine=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0),
+        transform_method='moment'))
+# training and testing settings
+train_cfg = dict(
+    init=dict(
+        assigner=dict(type='PointAssigner', scale=4, pos_num=1),
+        allowed_border=-1,
+        pos_weight=-1,
+        debug=False),
+    refine=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.5,
+            neg_iou_thr=0.4,
+            min_pos_iou=0,
+            ignore_iof_thr=-1),
+        allowed_border=-1,
+        pos_weight=-1,
+        debug=False))
+test_cfg = dict(
+    nms_pre=1000,
+    min_bbox_size=0,
+    score_thr=0.05,
+    nms=dict(type='nms', iou_thr=0.5),
+    max_per_img=100)
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+    dict(type='LoadImageFromFile'),
+    dict(type='LoadAnnotations', with_bbox=True),
+    dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+    dict(type='RandomFlip', flip_ratio=0.5),
+    dict(type='Normalize', **img_norm_cfg),
+    dict(type='Pad', size_divisor=32),
+    dict(type='DefaultFormatBundle'),
+    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+    dict(type='LoadImageFromFile'),
+    dict(
+        type='MultiScaleFlipAug',
+        img_scale=(1333, 800),
+        flip=False,
+        transforms=[
+            dict(type='Resize', keep_ratio=True),
+            dict(type='RandomFlip'),
+            dict(type='Normalize', **img_norm_cfg),
+            dict(type='Pad', size_divisor=32),
+            dict(type='ImageToTensor', keys=['img']),
+            dict(type='Collect', keys=['img']),
+        ])
+]
+data = dict(
+    imgs_per_gpu=2,
+    workers_per_gpu=2,
+    train=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_train2017.json',
+        img_prefix=data_root + 'train2017/',
+        pipeline=train_pipeline),
+    val=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        pipeline=test_pipeline),
+    test=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        pipeline=test_pipeline))
+# optimizer
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+    policy='step',
+    warmup='linear',
+    warmup_iters=500,
+    warmup_ratio=1.0 / 3,
+    step=[16, 22])
+checkpoint_config = dict(interval=1)
+# yapf:disable
+log_config = dict(
+    interval=50,
+    hooks=[
+        dict(type='TextLoggerHook'),
+        # dict(type='TensorboardLoggerHook')
+    ])
+# yapf:enable
+# runtime settings
+total_epochs = 24
+device_ids = range(8)
+dist_params = dict(backend='nccl')
+log_level = 'INFO'
+work_dir = './work_dirs/reppoints_moment_r101_fpn_2x'
+load_from = None
+resume_from = None
+auto_resume = True
+workflow = [('train', 1)]
diff --git a/configs/reppoints/reppoints_moment_r101_fpn_2x_mt.py b/configs/reppoints/reppoints_moment_r101_fpn_2x_mt.py
new file mode 100644
index 0000000000000000000000000000000000000000..2f481e7ac66197a886a97cb1c81fadc5608e828c
--- /dev/null
+++ b/configs/reppoints/reppoints_moment_r101_fpn_2x_mt.py
@@ -0,0 +1,146 @@
+# model settings
+norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
+
+model = dict(
+    type='RepPointsDetector',
+    pretrained='torchvision://resnet101',
+    backbone=dict(
+        type='ResNet',
+        depth=101,
+        num_stages=4,
+        out_indices=(0, 1, 2, 3),
+        frozen_stages=1,
+        style='pytorch'),
+    neck=dict(
+        type='FPN',
+        in_channels=[256, 512, 1024, 2048],
+        out_channels=256,
+        start_level=1,
+        add_extra_convs=True,
+        num_outs=5,
+        norm_cfg=norm_cfg),
+    bbox_head=dict(
+        type='RepPointsHead',
+        num_classes=81,
+        in_channels=256,
+        feat_channels=256,
+        point_feat_channels=256,
+        stacked_convs=3,
+        num_points=9,
+        gradient_mul=0.1,
+        point_strides=[8, 16, 32, 64, 128],
+        point_base_scale=4,
+        norm_cfg=norm_cfg,
+        loss_cls=dict(
+            type='FocalLoss',
+            use_sigmoid=True,
+            gamma=2.0,
+            alpha=0.25,
+            loss_weight=1.0),
+        loss_bbox_init=dict(type='SmoothL1Loss', beta=0.11, loss_weight=0.5),
+        loss_bbox_refine=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0),
+        transform_method='moment'))
+# training and testing settings
+train_cfg = dict(
+    init=dict(
+        assigner=dict(type='PointAssigner', scale=4, pos_num=1),
+        allowed_border=-1,
+        pos_weight=-1,
+        debug=False),
+    refine=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.5,
+            neg_iou_thr=0.4,
+            min_pos_iou=0,
+            ignore_iof_thr=-1),
+        allowed_border=-1,
+        pos_weight=-1,
+        debug=False))
+test_cfg = dict(
+    nms_pre=1000,
+    min_bbox_size=0,
+    score_thr=0.05,
+    nms=dict(type='nms', iou_thr=0.5),
+    max_per_img=100)
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+    dict(type='LoadImageFromFile'),
+    dict(type='LoadAnnotations', with_bbox=True),
+    dict(
+        type='Resize',
+        img_scale=[(1333, 480), (1333, 960)],
+        keep_ratio=True,
+        multiscale_mode='range'),
+    dict(type='RandomFlip', flip_ratio=0.5),
+    dict(type='Normalize', **img_norm_cfg),
+    dict(type='Pad', size_divisor=32),
+    dict(type='DefaultFormatBundle'),
+    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+    dict(type='LoadImageFromFile'),
+    dict(
+        type='MultiScaleFlipAug',
+        img_scale=(1333, 800),
+        flip=False,
+        transforms=[
+            dict(type='Resize', keep_ratio=True),
+            dict(type='RandomFlip'),
+            dict(type='Normalize', **img_norm_cfg),
+            dict(type='Pad', size_divisor=32),
+            dict(type='ImageToTensor', keys=['img']),
+            dict(type='Collect', keys=['img']),
+        ])
+]
+data = dict(
+    imgs_per_gpu=2,
+    workers_per_gpu=2,
+    train=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_train2017.json',
+        img_prefix=data_root + 'train2017/',
+        pipeline=train_pipeline),
+    val=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        pipeline=test_pipeline),
+    test=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        pipeline=test_pipeline))
+# optimizer
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+    policy='step',
+    warmup='linear',
+    warmup_iters=500,
+    warmup_ratio=1.0 / 3,
+    step=[16, 22])
+checkpoint_config = dict(interval=1)
+# yapf:disable
+log_config = dict(
+    interval=50,
+    hooks=[
+        dict(type='TextLoggerHook'),
+        # dict(type='TensorboardLoggerHook')
+    ])
+# yapf:enable
+# runtime settings
+total_epochs = 24
+device_ids = range(8)
+dist_params = dict(backend='nccl')
+log_level = 'INFO'
+work_dir = './work_dirs/reppoints_moment_r101_fpn_2x_mt'
+load_from = None
+resume_from = None
+auto_resume = True
+workflow = [('train', 1)]
diff --git a/configs/reppoints/reppoints_moment_r50_fpn_1x.py b/configs/reppoints/reppoints_moment_r50_fpn_1x.py
new file mode 100644
index 0000000000000000000000000000000000000000..671b9e2655b5ca886febd2b09937e4206b272533
--- /dev/null
+++ b/configs/reppoints/reppoints_moment_r50_fpn_1x.py
@@ -0,0 +1,142 @@
+# model settings
+norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
+
+model = dict(
+    type='RepPointsDetector',
+    pretrained='torchvision://resnet50',
+    backbone=dict(
+        type='ResNet',
+        depth=50,
+        num_stages=4,
+        out_indices=(0, 1, 2, 3),
+        frozen_stages=1,
+        style='pytorch'),
+    neck=dict(
+        type='FPN',
+        in_channels=[256, 512, 1024, 2048],
+        out_channels=256,
+        start_level=1,
+        add_extra_convs=True,
+        num_outs=5,
+        norm_cfg=norm_cfg),
+    bbox_head=dict(
+        type='RepPointsHead',
+        num_classes=81,
+        in_channels=256,
+        feat_channels=256,
+        point_feat_channels=256,
+        stacked_convs=3,
+        num_points=9,
+        gradient_mul=0.1,
+        point_strides=[8, 16, 32, 64, 128],
+        point_base_scale=4,
+        norm_cfg=norm_cfg,
+        loss_cls=dict(
+            type='FocalLoss',
+            use_sigmoid=True,
+            gamma=2.0,
+            alpha=0.25,
+            loss_weight=1.0),
+        loss_bbox_init=dict(type='SmoothL1Loss', beta=0.11, loss_weight=0.5),
+        loss_bbox_refine=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0),
+        transform_method='moment'))
+# training and testing settings
+train_cfg = dict(
+    init=dict(
+        assigner=dict(type='PointAssigner', scale=4, pos_num=1),
+        allowed_border=-1,
+        pos_weight=-1,
+        debug=False),
+    refine=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.5,
+            neg_iou_thr=0.4,
+            min_pos_iou=0,
+            ignore_iof_thr=-1),
+        allowed_border=-1,
+        pos_weight=-1,
+        debug=False))
+test_cfg = dict(
+    nms_pre=1000,
+    min_bbox_size=0,
+    score_thr=0.05,
+    nms=dict(type='nms', iou_thr=0.5),
+    max_per_img=100)
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+    dict(type='LoadImageFromFile'),
+    dict(type='LoadAnnotations', with_bbox=True),
+    dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+    dict(type='RandomFlip', flip_ratio=0.5),
+    dict(type='Normalize', **img_norm_cfg),
+    dict(type='Pad', size_divisor=32),
+    dict(type='DefaultFormatBundle'),
+    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+    dict(type='LoadImageFromFile'),
+    dict(
+        type='MultiScaleFlipAug',
+        img_scale=(1333, 800),
+        flip=False,
+        transforms=[
+            dict(type='Resize', keep_ratio=True),
+            dict(type='RandomFlip'),
+            dict(type='Normalize', **img_norm_cfg),
+            dict(type='Pad', size_divisor=32),
+            dict(type='ImageToTensor', keys=['img']),
+            dict(type='Collect', keys=['img']),
+        ])
+]
+data = dict(
+    imgs_per_gpu=2,
+    workers_per_gpu=2,
+    train=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_train2017.json',
+        img_prefix=data_root + 'train2017/',
+        pipeline=train_pipeline),
+    val=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        pipeline=test_pipeline),
+    test=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        pipeline=test_pipeline))
+# optimizer
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+    policy='step',
+    warmup='linear',
+    warmup_iters=500,
+    warmup_ratio=1.0 / 3,
+    step=[8, 11])
+checkpoint_config = dict(interval=1)
+# yapf:disable
+log_config = dict(
+    interval=50,
+    hooks=[
+        dict(type='TextLoggerHook'),
+        # dict(type='TensorboardLoggerHook')
+    ])
+# yapf:enable
+# runtime settings
+total_epochs = 12
+device_ids = range(8)
+dist_params = dict(backend='nccl')
+log_level = 'INFO'
+work_dir = './work_dirs/reppoints_moment_r50_fpn_1x'
+load_from = None
+resume_from = None
+auto_resume = True
+workflow = [('train', 1)]
diff --git a/configs/reppoints/reppoints_moment_r50_fpn_2x.py b/configs/reppoints/reppoints_moment_r50_fpn_2x.py
new file mode 100644
index 0000000000000000000000000000000000000000..53824301418db1e46a467fe2547b0f2a5b420c32
--- /dev/null
+++ b/configs/reppoints/reppoints_moment_r50_fpn_2x.py
@@ -0,0 +1,142 @@
+# model settings
+norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
+
+model = dict(
+    type='RepPointsDetector',
+    pretrained='torchvision://resnet50',
+    backbone=dict(
+        type='ResNet',
+        depth=50,
+        num_stages=4,
+        out_indices=(0, 1, 2, 3),
+        frozen_stages=1,
+        style='pytorch'),
+    neck=dict(
+        type='FPN',
+        in_channels=[256, 512, 1024, 2048],
+        out_channels=256,
+        start_level=1,
+        add_extra_convs=True,
+        num_outs=5,
+        norm_cfg=norm_cfg),
+    bbox_head=dict(
+        type='RepPointsHead',
+        num_classes=81,
+        in_channels=256,
+        feat_channels=256,
+        point_feat_channels=256,
+        stacked_convs=3,
+        num_points=9,
+        gradient_mul=0.1,
+        point_strides=[8, 16, 32, 64, 128],
+        point_base_scale=4,
+        norm_cfg=norm_cfg,
+        loss_cls=dict(
+            type='FocalLoss',
+            use_sigmoid=True,
+            gamma=2.0,
+            alpha=0.25,
+            loss_weight=1.0),
+        loss_bbox_init=dict(type='SmoothL1Loss', beta=0.11, loss_weight=0.5),
+        loss_bbox_refine=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0),
+        transform_method='moment'))
+# training and testing settings
+train_cfg = dict(
+    init=dict(
+        assigner=dict(type='PointAssigner', scale=4, pos_num=1),
+        allowed_border=-1,
+        pos_weight=-1,
+        debug=False),
+    refine=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.5,
+            neg_iou_thr=0.4,
+            min_pos_iou=0,
+            ignore_iof_thr=-1),
+        allowed_border=-1,
+        pos_weight=-1,
+        debug=False))
+test_cfg = dict(
+    nms_pre=1000,
+    min_bbox_size=0,
+    score_thr=0.05,
+    nms=dict(type='nms', iou_thr=0.5),
+    max_per_img=100)
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+    dict(type='LoadImageFromFile'),
+    dict(type='LoadAnnotations', with_bbox=True),
+    dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+    dict(type='RandomFlip', flip_ratio=0.5),
+    dict(type='Normalize', **img_norm_cfg),
+    dict(type='Pad', size_divisor=32),
+    dict(type='DefaultFormatBundle'),
+    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+    dict(type='LoadImageFromFile'),
+    dict(
+        type='MultiScaleFlipAug',
+        img_scale=(1333, 800),
+        flip=False,
+        transforms=[
+            dict(type='Resize', keep_ratio=True),
+            dict(type='RandomFlip'),
+            dict(type='Normalize', **img_norm_cfg),
+            dict(type='Pad', size_divisor=32),
+            dict(type='ImageToTensor', keys=['img']),
+            dict(type='Collect', keys=['img']),
+        ])
+]
+data = dict(
+    imgs_per_gpu=2,
+    workers_per_gpu=2,
+    train=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_train2017.json',
+        img_prefix=data_root + 'train2017/',
+        pipeline=train_pipeline),
+    val=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        pipeline=test_pipeline),
+    test=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        pipeline=test_pipeline))
+# optimizer
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+    policy='step',
+    warmup='linear',
+    warmup_iters=500,
+    warmup_ratio=1.0 / 3,
+    step=[16, 22])
+checkpoint_config = dict(interval=1)
+# yapf:disable
+log_config = dict(
+    interval=50,
+    hooks=[
+        dict(type='TextLoggerHook'),
+        # dict(type='TensorboardLoggerHook')
+    ])
+# yapf:enable
+# runtime settings
+total_epochs = 24
+device_ids = range(8)
+dist_params = dict(backend='nccl')
+log_level = 'INFO'
+work_dir = './work_dirs/reppoints_moment_r50_fpn_2x'
+load_from = None
+resume_from = None
+auto_resume = True
+workflow = [('train', 1)]
diff --git a/configs/reppoints/reppoints_moment_r50_fpn_2x_mt.py b/configs/reppoints/reppoints_moment_r50_fpn_2x_mt.py
new file mode 100644
index 0000000000000000000000000000000000000000..ad86d74c458000784ee1d2c832a23500cafe8169
--- /dev/null
+++ b/configs/reppoints/reppoints_moment_r50_fpn_2x_mt.py
@@ -0,0 +1,146 @@
+# model settings
+norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
+
+model = dict(
+    type='RepPointsDetector',
+    pretrained='torchvision://resnet50',
+    backbone=dict(
+        type='ResNet',
+        depth=50,
+        num_stages=4,
+        out_indices=(0, 1, 2, 3),
+        frozen_stages=1,
+        style='pytorch'),
+    neck=dict(
+        type='FPN',
+        in_channels=[256, 512, 1024, 2048],
+        out_channels=256,
+        start_level=1,
+        add_extra_convs=True,
+        num_outs=5,
+        norm_cfg=norm_cfg),
+    bbox_head=dict(
+        type='RepPointsHead',
+        num_classes=81,
+        in_channels=256,
+        feat_channels=256,
+        point_feat_channels=256,
+        stacked_convs=3,
+        num_points=9,
+        gradient_mul=0.1,
+        point_strides=[8, 16, 32, 64, 128],
+        point_base_scale=4,
+        norm_cfg=norm_cfg,
+        loss_cls=dict(
+            type='FocalLoss',
+            use_sigmoid=True,
+            gamma=2.0,
+            alpha=0.25,
+            loss_weight=1.0),
+        loss_bbox_init=dict(type='SmoothL1Loss', beta=0.11, loss_weight=0.5),
+        loss_bbox_refine=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0),
+        transform_method='moment'))
+# training and testing settings
+train_cfg = dict(
+    init=dict(
+        assigner=dict(type='PointAssigner', scale=4, pos_num=1),
+        allowed_border=-1,
+        pos_weight=-1,
+        debug=False),
+    refine=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.5,
+            neg_iou_thr=0.4,
+            min_pos_iou=0,
+            ignore_iof_thr=-1),
+        allowed_border=-1,
+        pos_weight=-1,
+        debug=False))
+test_cfg = dict(
+    nms_pre=1000,
+    min_bbox_size=0,
+    score_thr=0.05,
+    nms=dict(type='nms', iou_thr=0.5),
+    max_per_img=100)
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+    dict(type='LoadImageFromFile'),
+    dict(type='LoadAnnotations', with_bbox=True),
+    dict(
+        type='Resize',
+        img_scale=[(1333, 480), (1333, 960)],
+        keep_ratio=True,
+        multiscale_mode='range'),
+    dict(type='RandomFlip', flip_ratio=0.5),
+    dict(type='Normalize', **img_norm_cfg),
+    dict(type='Pad', size_divisor=32),
+    dict(type='DefaultFormatBundle'),
+    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+    dict(type='LoadImageFromFile'),
+    dict(
+        type='MultiScaleFlipAug',
+        img_scale=(1333, 800),
+        flip=False,
+        transforms=[
+            dict(type='Resize', keep_ratio=True),
+            dict(type='RandomFlip'),
+            dict(type='Normalize', **img_norm_cfg),
+            dict(type='Pad', size_divisor=32),
+            dict(type='ImageToTensor', keys=['img']),
+            dict(type='Collect', keys=['img']),
+        ])
+]
+data = dict(
+    imgs_per_gpu=2,
+    workers_per_gpu=2,
+    train=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_train2017.json',
+        img_prefix=data_root + 'train2017/',
+        pipeline=train_pipeline),
+    val=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        pipeline=test_pipeline),
+    test=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        pipeline=test_pipeline))
+# optimizer
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+    policy='step',
+    warmup='linear',
+    warmup_iters=500,
+    warmup_ratio=1.0 / 3,
+    step=[16, 22])
+checkpoint_config = dict(interval=1)
+# yapf:disable
+log_config = dict(
+    interval=50,
+    hooks=[
+        dict(type='TextLoggerHook'),
+        # dict(type='TensorboardLoggerHook')
+    ])
+# yapf:enable
+# runtime settings
+total_epochs = 24
+device_ids = range(8)
+dist_params = dict(backend='nccl')
+log_level = 'INFO'
+work_dir = './work_dirs/reppoints_moment_r50_fpn_2x_mt'
+load_from = None
+resume_from = None
+auto_resume = True
+workflow = [('train', 1)]
diff --git a/configs/reppoints/reppoints_moment_x101_dcn_fpn_2x.py b/configs/reppoints/reppoints_moment_x101_dcn_fpn_2x.py
new file mode 100644
index 0000000000000000000000000000000000000000..bc0bd6636d37d5c5cd95a4c7af9fe0cbc6c7d3c2
--- /dev/null
+++ b/configs/reppoints/reppoints_moment_x101_dcn_fpn_2x.py
@@ -0,0 +1,150 @@
+# model settings
+norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
+
+model = dict(
+    type='RepPointsDetector',
+    pretrained='open-mmlab://resnext101_32x4d',
+    backbone=dict(
+        type='ResNeXt',
+        depth=101,
+        groups=32,
+        base_width=4,
+        num_stages=4,
+        out_indices=(0, 1, 2, 3),
+        frozen_stages=1,
+        style='pytorch',
+        dcn=dict(
+            modulated=False,
+            groups=32,
+            deformable_groups=1,
+            fallback_on_stride=False),
+        stage_with_dcn=(False, True, True, True)),
+    neck=dict(
+        type='FPN',
+        in_channels=[256, 512, 1024, 2048],
+        out_channels=256,
+        start_level=1,
+        add_extra_convs=True,
+        num_outs=5,
+        norm_cfg=norm_cfg),
+    bbox_head=dict(
+        type='RepPointsHead',
+        num_classes=81,
+        in_channels=256,
+        feat_channels=256,
+        point_feat_channels=256,
+        stacked_convs=3,
+        num_points=9,
+        gradient_mul=0.1,
+        point_strides=[8, 16, 32, 64, 128],
+        point_base_scale=4,
+        norm_cfg=norm_cfg,
+        loss_cls=dict(
+            type='FocalLoss',
+            use_sigmoid=True,
+            gamma=2.0,
+            alpha=0.25,
+            loss_weight=1.0),
+        loss_bbox_init=dict(type='SmoothL1Loss', beta=0.11, loss_weight=0.5),
+        loss_bbox_refine=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0),
+        transform_method='moment'))
+# training and testing settings
+train_cfg = dict(
+    init=dict(
+        assigner=dict(type='PointAssigner', scale=4, pos_num=1),
+        allowed_border=-1,
+        pos_weight=-1,
+        debug=False),
+    refine=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.5,
+            neg_iou_thr=0.4,
+            min_pos_iou=0,
+            ignore_iof_thr=-1),
+        allowed_border=-1,
+        pos_weight=-1,
+        debug=False))
+test_cfg = dict(
+    nms_pre=1000,
+    min_bbox_size=0,
+    score_thr=0.05,
+    nms=dict(type='nms', iou_thr=0.5),
+    max_per_img=100)
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+    dict(type='LoadImageFromFile'),
+    dict(type='LoadAnnotations', with_bbox=True),
+    dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+    dict(type='RandomFlip', flip_ratio=0.5),
+    dict(type='Normalize', **img_norm_cfg),
+    dict(type='Pad', size_divisor=32),
+    dict(type='DefaultFormatBundle'),
+    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+    dict(type='LoadImageFromFile'),
+    dict(
+        type='MultiScaleFlipAug',
+        img_scale=(1333, 800),
+        flip=False,
+        transforms=[
+            dict(type='Resize', keep_ratio=True),
+            dict(type='RandomFlip'),
+            dict(type='Normalize', **img_norm_cfg),
+            dict(type='Pad', size_divisor=32),
+            dict(type='ImageToTensor', keys=['img']),
+            dict(type='Collect', keys=['img']),
+        ])
+]
+data = dict(
+    imgs_per_gpu=2,
+    workers_per_gpu=2,
+    train=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_train2017.json',
+        img_prefix=data_root + 'train2017/',
+        pipeline=train_pipeline),
+    val=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        pipeline=test_pipeline),
+    test=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        pipeline=test_pipeline))
+# optimizer
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+    policy='step',
+    warmup='linear',
+    warmup_iters=500,
+    warmup_ratio=1.0 / 3,
+    step=[16, 22])
+checkpoint_config = dict(interval=1)
+# yapf:disable
+log_config = dict(
+    interval=50,
+    hooks=[
+        dict(type='TextLoggerHook'),
+        # dict(type='TensorboardLoggerHook')
+    ])
+# yapf:enable
+# runtime settings
+total_epochs = 24
+device_ids = range(8)
+dist_params = dict(backend='nccl')
+log_level = 'INFO'
+work_dir = './work_dirs/reppoints_moment_x101_dcn_fpn_2x'
+load_from = None
+resume_from = None
+auto_resume = True
+workflow = [('train', 1)]
diff --git a/configs/reppoints/reppoints_moment_x101_dcn_fpn_2x_mt.py b/configs/reppoints/reppoints_moment_x101_dcn_fpn_2x_mt.py
new file mode 100644
index 0000000000000000000000000000000000000000..93b5ac83abde9dc530f4105fd0ca71d9c42d329c
--- /dev/null
+++ b/configs/reppoints/reppoints_moment_x101_dcn_fpn_2x_mt.py
@@ -0,0 +1,154 @@
+# model settings
+norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
+
+model = dict(
+    type='RepPointsDetector',
+    pretrained='open-mmlab://resnext101_32x4d',
+    backbone=dict(
+        type='ResNeXt',
+        depth=101,
+        groups=32,
+        base_width=4,
+        num_stages=4,
+        out_indices=(0, 1, 2, 3),
+        frozen_stages=1,
+        style='pytorch',
+        dcn=dict(
+            modulated=False,
+            groups=32,
+            deformable_groups=1,
+            fallback_on_stride=False),
+        stage_with_dcn=(False, True, True, True)),
+    neck=dict(
+        type='FPN',
+        in_channels=[256, 512, 1024, 2048],
+        out_channels=256,
+        start_level=1,
+        add_extra_convs=True,
+        num_outs=5,
+        norm_cfg=norm_cfg),
+    bbox_head=dict(
+        type='RepPointsHead',
+        num_classes=81,
+        in_channels=256,
+        feat_channels=256,
+        point_feat_channels=256,
+        stacked_convs=3,
+        num_points=9,
+        gradient_mul=0.1,
+        point_strides=[8, 16, 32, 64, 128],
+        point_base_scale=4,
+        norm_cfg=norm_cfg,
+        loss_cls=dict(
+            type='FocalLoss',
+            use_sigmoid=True,
+            gamma=2.0,
+            alpha=0.25,
+            loss_weight=1.0),
+        loss_bbox_init=dict(type='SmoothL1Loss', beta=0.11, loss_weight=0.5),
+        loss_bbox_refine=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0),
+        transform_method='moment'))
+# training and testing settings
+train_cfg = dict(
+    init=dict(
+        assigner=dict(type='PointAssigner', scale=4, pos_num=1),
+        allowed_border=-1,
+        pos_weight=-1,
+        debug=False),
+    refine=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.5,
+            neg_iou_thr=0.4,
+            min_pos_iou=0,
+            ignore_iof_thr=-1),
+        allowed_border=-1,
+        pos_weight=-1,
+        debug=False))
+test_cfg = dict(
+    nms_pre=1000,
+    min_bbox_size=0,
+    score_thr=0.05,
+    nms=dict(type='nms', iou_thr=0.5),
+    max_per_img=100)
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+    dict(type='LoadImageFromFile'),
+    dict(type='LoadAnnotations', with_bbox=True),
+    dict(
+        type='Resize',
+        img_scale=[(1333, 480), (1333, 960)],
+        keep_ratio=True,
+        multiscale_mode='range'),
+    dict(type='RandomFlip', flip_ratio=0.5),
+    dict(type='Normalize', **img_norm_cfg),
+    dict(type='Pad', size_divisor=32),
+    dict(type='DefaultFormatBundle'),
+    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+    dict(type='LoadImageFromFile'),
+    dict(
+        type='MultiScaleFlipAug',
+        img_scale=(1333, 800),
+        flip=False,
+        transforms=[
+            dict(type='Resize', keep_ratio=True),
+            dict(type='RandomFlip'),
+            dict(type='Normalize', **img_norm_cfg),
+            dict(type='Pad', size_divisor=32),
+            dict(type='ImageToTensor', keys=['img']),
+            dict(type='Collect', keys=['img']),
+        ])
+]
+data = dict(
+    imgs_per_gpu=2,
+    workers_per_gpu=2,
+    train=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_train2017.json',
+        img_prefix=data_root + 'train2017/',
+        pipeline=train_pipeline),
+    val=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        pipeline=test_pipeline),
+    test=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        pipeline=test_pipeline))
+# optimizer
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+    policy='step',
+    warmup='linear',
+    warmup_iters=500,
+    warmup_ratio=1.0 / 3,
+    step=[16, 22])
+checkpoint_config = dict(interval=1)
+# yapf:disable
+log_config = dict(
+    interval=50,
+    hooks=[
+        dict(type='TextLoggerHook'),
+        # dict(type='TensorboardLoggerHook')
+    ])
+# yapf:enable
+# runtime settings
+total_epochs = 24
+device_ids = range(8)
+dist_params = dict(backend='nccl')
+log_level = 'INFO'
+work_dir = './work_dirs/reppoints_moment_x101_dcn_fpn_2x_mt'
+load_from = None
+resume_from = None
+auto_resume = True
+workflow = [('train', 1)]
diff --git a/configs/reppoints/reppoints_partial_minmax_r50_fpn_1x.py b/configs/reppoints/reppoints_partial_minmax_r50_fpn_1x.py
new file mode 100644
index 0000000000000000000000000000000000000000..2296163c8a254defb65e0340bb796f3d45c127d8
--- /dev/null
+++ b/configs/reppoints/reppoints_partial_minmax_r50_fpn_1x.py
@@ -0,0 +1,142 @@
+# model settings
+norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
+
+model = dict(
+    type='RepPointsDetector',
+    pretrained='torchvision://resnet50',
+    backbone=dict(
+        type='ResNet',
+        depth=50,
+        num_stages=4,
+        out_indices=(0, 1, 2, 3),
+        frozen_stages=1,
+        style='pytorch'),
+    neck=dict(
+        type='FPN',
+        in_channels=[256, 512, 1024, 2048],
+        out_channels=256,
+        start_level=1,
+        add_extra_convs=True,
+        num_outs=5,
+        norm_cfg=norm_cfg),
+    bbox_head=dict(
+        type='RepPointsHead',
+        num_classes=81,
+        in_channels=256,
+        feat_channels=256,
+        point_feat_channels=256,
+        stacked_convs=3,
+        num_points=9,
+        gradient_mul=0.1,
+        point_strides=[8, 16, 32, 64, 128],
+        point_base_scale=4,
+        norm_cfg=norm_cfg,
+        loss_cls=dict(
+            type='FocalLoss',
+            use_sigmoid=True,
+            gamma=2.0,
+            alpha=0.25,
+            loss_weight=1.0),
+        loss_bbox_init=dict(type='SmoothL1Loss', beta=0.11, loss_weight=0.5),
+        loss_bbox_refine=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0),
+        transform_method='partial_minmax'))
+# training and testing settings
+train_cfg = dict(
+    init=dict(
+        assigner=dict(type='PointAssigner', scale=4, pos_num=1),
+        allowed_border=-1,
+        pos_weight=-1,
+        debug=False),
+    refine=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.5,
+            neg_iou_thr=0.4,
+            min_pos_iou=0,
+            ignore_iof_thr=-1),
+        allowed_border=-1,
+        pos_weight=-1,
+        debug=False))
+test_cfg = dict(
+    nms_pre=1000,
+    min_bbox_size=0,
+    score_thr=0.05,
+    nms=dict(type='nms', iou_thr=0.5),
+    max_per_img=100)
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+train_pipeline = [
+    dict(type='LoadImageFromFile'),
+    dict(type='LoadAnnotations', with_bbox=True),
+    dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
+    dict(type='RandomFlip', flip_ratio=0.5),
+    dict(type='Normalize', **img_norm_cfg),
+    dict(type='Pad', size_divisor=32),
+    dict(type='DefaultFormatBundle'),
+    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
+]
+test_pipeline = [
+    dict(type='LoadImageFromFile'),
+    dict(
+        type='MultiScaleFlipAug',
+        img_scale=(1333, 800),
+        flip=False,
+        transforms=[
+            dict(type='Resize', keep_ratio=True),
+            dict(type='RandomFlip'),
+            dict(type='Normalize', **img_norm_cfg),
+            dict(type='Pad', size_divisor=32),
+            dict(type='ImageToTensor', keys=['img']),
+            dict(type='Collect', keys=['img']),
+        ])
+]
+data = dict(
+    imgs_per_gpu=2,
+    workers_per_gpu=2,
+    train=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_train2017.json',
+        img_prefix=data_root + 'train2017/',
+        pipeline=train_pipeline),
+    val=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        pipeline=test_pipeline),
+    test=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        pipeline=test_pipeline))
+# optimizer
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+    policy='step',
+    warmup='linear',
+    warmup_iters=500,
+    warmup_ratio=1.0 / 3,
+    step=[8, 11])
+checkpoint_config = dict(interval=1)
+# yapf:disable
+log_config = dict(
+    interval=50,
+    hooks=[
+        dict(type='TextLoggerHook'),
+        # dict(type='TensorboardLoggerHook')
+    ])
+# yapf:enable
+# runtime settings
+total_epochs = 12
+device_ids = range(8)
+dist_params = dict(backend='nccl')
+log_level = 'INFO'
+work_dir = './work_dirs/reppoints_partial_minmax_r50_fpn_1x'
+load_from = None
+resume_from = None
+auto_resume = True
+workflow = [('train', 1)]
diff --git a/mmdet/core/anchor/__init__.py b/mmdet/core/anchor/__init__.py
index a5f070f8bbe9a7293acf13fd89d480827eba3a69..dfeb3b407300beee4d530c111b4187693b190e2b 100644
--- a/mmdet/core/anchor/__init__.py
+++ b/mmdet/core/anchor/__init__.py
@@ -1,8 +1,10 @@
 from .anchor_generator import AnchorGenerator
 from .anchor_target import anchor_inside_flags, anchor_target
 from .guided_anchor_target import ga_loc_target, ga_shape_target
+from .point_generator import PointGenerator
+from .point_target import point_target
 
 __all__ = [
     'AnchorGenerator', 'anchor_target', 'anchor_inside_flags', 'ga_loc_target',
-    'ga_shape_target'
+    'ga_shape_target', 'PointGenerator', 'point_target'
 ]
diff --git a/mmdet/core/anchor/point_generator.py b/mmdet/core/anchor/point_generator.py
new file mode 100644
index 0000000000000000000000000000000000000000..c1a34dddd7a76946cf8177f0aea529a29cfa4a78
--- /dev/null
+++ b/mmdet/core/anchor/point_generator.py
@@ -0,0 +1,34 @@
+import torch
+
+
+class PointGenerator(object):
+
+    def _meshgrid(self, x, y, row_major=True):
+        xx = x.repeat(len(y))
+        yy = y.view(-1, 1).repeat(1, len(x)).view(-1)
+        if row_major:
+            return xx, yy
+        else:
+            return yy, xx
+
+    def grid_points(self, featmap_size, stride=16, device='cuda'):
+        feat_h, feat_w = featmap_size
+        shift_x = torch.arange(0., feat_w, device=device) * stride
+        shift_y = torch.arange(0., feat_h, device=device) * stride
+        shift_xx, shift_yy = self._meshgrid(shift_x, shift_y)
+        stride = shift_x.new_full((shift_xx.shape[0], ), stride)
+        shifts = torch.stack([shift_xx, shift_yy, stride], dim=-1)
+        all_points = shifts.to(device)
+        return all_points
+
+    def valid_flags(self, featmap_size, valid_size, device='cuda'):
+        feat_h, feat_w = featmap_size
+        valid_h, valid_w = valid_size
+        assert valid_h <= feat_h and valid_w <= feat_w
+        valid_x = torch.zeros(feat_w, dtype=torch.uint8, device=device)
+        valid_y = torch.zeros(feat_h, dtype=torch.uint8, device=device)
+        valid_x[:valid_w] = 1
+        valid_y[:valid_h] = 1
+        valid_xx, valid_yy = self._meshgrid(valid_x, valid_y)
+        valid = valid_xx & valid_yy
+        return valid
diff --git a/mmdet/core/anchor/point_target.py b/mmdet/core/anchor/point_target.py
new file mode 100644
index 0000000000000000000000000000000000000000..1ab8d0260c93e479783fff9fbb02d680589ed28e
--- /dev/null
+++ b/mmdet/core/anchor/point_target.py
@@ -0,0 +1,165 @@
+import torch
+
+from ..bbox import PseudoSampler, assign_and_sample, build_assigner
+from ..utils import multi_apply
+
+
+def point_target(proposals_list,
+                 valid_flag_list,
+                 gt_bboxes_list,
+                 img_metas,
+                 cfg,
+                 gt_bboxes_ignore_list=None,
+                 gt_labels_list=None,
+                 label_channels=1,
+                 sampling=True,
+                 unmap_outputs=True):
+    """Compute corresponding GT box and classification targets for proposals.
+
+    Args:
+        points_list (list[list]): Multi level points of each image.
+        valid_flag_list (list[list]): Multi level valid flags of each image.
+        gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image.
+        img_metas (list[dict]): Meta info of each image.
+        cfg (dict): train sample configs.
+
+    Returns:
+        tuple
+    """
+    num_imgs = len(img_metas)
+    assert len(proposals_list) == len(valid_flag_list) == num_imgs
+
+    # points number of multi levels
+    num_level_proposals = [points.size(0) for points in proposals_list[0]]
+
+    # concat all level points and flags to a single tensor
+    for i in range(num_imgs):
+        assert len(proposals_list[i]) == len(valid_flag_list[i])
+        proposals_list[i] = torch.cat(proposals_list[i])
+        valid_flag_list[i] = torch.cat(valid_flag_list[i])
+
+    # compute targets for each image
+    if gt_bboxes_ignore_list is None:
+        gt_bboxes_ignore_list = [None for _ in range(num_imgs)]
+    if gt_labels_list is None:
+        gt_labels_list = [None for _ in range(num_imgs)]
+    (all_labels, all_label_weights, all_bbox_gt, all_proposals,
+     all_proposal_weights, pos_inds_list, neg_inds_list) = multi_apply(
+         point_target_single,
+         proposals_list,
+         valid_flag_list,
+         gt_bboxes_list,
+         gt_bboxes_ignore_list,
+         gt_labels_list,
+         cfg=cfg,
+         label_channels=label_channels,
+         sampling=sampling,
+         unmap_outputs=unmap_outputs)
+    # no valid points
+    if any([labels is None for labels in all_labels]):
+        return None
+    # sampled points of all images
+    num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list])
+    num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list])
+    labels_list = images_to_levels(all_labels, num_level_proposals)
+    label_weights_list = images_to_levels(all_label_weights,
+                                          num_level_proposals)
+    bbox_gt_list = images_to_levels(all_bbox_gt, num_level_proposals)
+    proposals_list = images_to_levels(all_proposals, num_level_proposals)
+    proposal_weights_list = images_to_levels(all_proposal_weights,
+                                             num_level_proposals)
+    return (labels_list, label_weights_list, bbox_gt_list, proposals_list,
+            proposal_weights_list, num_total_pos, num_total_neg)
+
+
+def images_to_levels(target, num_level_grids):
+    """Convert targets by image to targets by feature level.
+
+    [target_img0, target_img1] -> [target_level0, target_level1, ...]
+    """
+    target = torch.stack(target, 0)
+    level_targets = []
+    start = 0
+    for n in num_level_grids:
+        end = start + n
+        level_targets.append(target[:, start:end].squeeze(0))
+        start = end
+    return level_targets
+
+
+def point_target_single(flat_proposals,
+                        valid_flags,
+                        gt_bboxes,
+                        gt_bboxes_ignore,
+                        gt_labels,
+                        cfg,
+                        label_channels=1,
+                        sampling=True,
+                        unmap_outputs=True):
+    inside_flags = valid_flags
+    if not inside_flags.any():
+        return (None, ) * 7
+    # assign gt and sample proposals
+    proposals = flat_proposals[inside_flags, :]
+
+    if sampling:
+        assign_result, sampling_result = assign_and_sample(
+            proposals, gt_bboxes, gt_bboxes_ignore, None, cfg)
+    else:
+        bbox_assigner = build_assigner(cfg.assigner)
+        assign_result = bbox_assigner.assign(proposals, gt_bboxes,
+                                             gt_bboxes_ignore, gt_labels)
+        bbox_sampler = PseudoSampler()
+        sampling_result = bbox_sampler.sample(assign_result, proposals,
+                                              gt_bboxes)
+
+    num_valid_proposals = proposals.shape[0]
+    bbox_gt = proposals.new_zeros([num_valid_proposals, 4])
+    pos_proposals = torch.zeros_like(proposals)
+    proposals_weights = proposals.new_zeros([num_valid_proposals, 4])
+    labels = proposals.new_zeros(num_valid_proposals, dtype=torch.long)
+    label_weights = proposals.new_zeros(num_valid_proposals, dtype=torch.float)
+
+    pos_inds = sampling_result.pos_inds
+    neg_inds = sampling_result.neg_inds
+    if len(pos_inds) > 0:
+        pos_gt_bboxes = sampling_result.pos_gt_bboxes
+        bbox_gt[pos_inds, :] = pos_gt_bboxes
+        pos_proposals[pos_inds, :] = proposals[pos_inds, :]
+        proposals_weights[pos_inds, :] = 1.0
+        if gt_labels is None:
+            labels[pos_inds] = 1
+        else:
+            labels[pos_inds] = gt_labels[sampling_result.pos_assigned_gt_inds]
+        if cfg.pos_weight <= 0:
+            label_weights[pos_inds] = 1.0
+        else:
+            label_weights[pos_inds] = cfg.pos_weight
+    if len(neg_inds) > 0:
+        label_weights[neg_inds] = 1.0
+
+    # map up to original set of proposals
+    if unmap_outputs:
+        num_total_proposals = flat_proposals.size(0)
+        labels = unmap(labels, num_total_proposals, inside_flags)
+        label_weights = unmap(label_weights, num_total_proposals, inside_flags)
+        bbox_gt = unmap(bbox_gt, num_total_proposals, inside_flags)
+        pos_proposals = unmap(pos_proposals, num_total_proposals, inside_flags)
+        proposals_weights = unmap(proposals_weights, num_total_proposals,
+                                  inside_flags)
+
+    return (labels, label_weights, bbox_gt, pos_proposals, proposals_weights,
+            pos_inds, neg_inds)
+
+
+def unmap(data, count, inds, fill=0):
+    """ Unmap a subset of item (data) back to the original set of items (of
+    size count) """
+    if data.dim() == 1:
+        ret = data.new_full((count, ), fill)
+        ret[inds] = data
+    else:
+        new_size = (count, ) + data.size()[1:]
+        ret = data.new_full(new_size, fill)
+        ret[inds, :] = data
+    return ret
diff --git a/mmdet/core/bbox/assigners/__init__.py b/mmdet/core/bbox/assigners/__init__.py
index 594e8406b5dad0ef381a9dd9d2ec9fbb75e0efd7..93eebb775be7720f232f122050d5f753117f7731 100644
--- a/mmdet/core/bbox/assigners/__init__.py
+++ b/mmdet/core/bbox/assigners/__init__.py
@@ -2,7 +2,9 @@ from .approx_max_iou_assigner import ApproxMaxIoUAssigner
 from .assign_result import AssignResult
 from .base_assigner import BaseAssigner
 from .max_iou_assigner import MaxIoUAssigner
+from .point_assigner import PointAssigner
 
 __all__ = [
-    'BaseAssigner', 'MaxIoUAssigner', 'ApproxMaxIoUAssigner', 'AssignResult'
+    'BaseAssigner', 'MaxIoUAssigner', 'ApproxMaxIoUAssigner', 'AssignResult',
+    'PointAssigner'
 ]
diff --git a/mmdet/core/bbox/assigners/point_assigner.py b/mmdet/core/bbox/assigners/point_assigner.py
new file mode 100644
index 0000000000000000000000000000000000000000..fe81e7d57e0a00ebbd732638927d629c4e87960a
--- /dev/null
+++ b/mmdet/core/bbox/assigners/point_assigner.py
@@ -0,0 +1,116 @@
+import torch
+
+from .assign_result import AssignResult
+from .base_assigner import BaseAssigner
+
+
+class PointAssigner(BaseAssigner):
+    """Assign a corresponding gt bbox or background to each point.
+
+    Each proposals will be assigned with `0`, or a positive integer
+    indicating the ground truth index.
+
+    - 0: negative sample, no assigned gt
+    - positive integer: positive sample, index (1-based) of assigned gt
+
+    """
+
+    def __init__(self, scale=4, pos_num=3):
+        self.scale = scale
+        self.pos_num = pos_num
+
+    def assign(self, points, gt_bboxes, gt_bboxes_ignore=None, gt_labels=None):
+        """Assign gt to points.
+
+        This method assign a gt bbox to every points set, each points set
+        will be assigned with  0, or a positive number.
+        0 means negative sample, positive number is the index (1-based) of
+        assigned gt.
+        The assignment is done in following steps, the order matters.
+
+        1. assign every points to 0
+        2. A point is assigned to some gt bbox if
+            (i) the point is within the k closest points to the gt bbox
+            (ii) the distance between this point and the gt is smaller than
+                other gt bboxes
+
+        Args:
+            points (Tensor): points to be assigned, shape(n, 3) while last
+                dimension stands for (x, y, stride).
+            gt_bboxes (Tensor): Groundtruth boxes, shape (k, 4).
+            gt_bboxes_ignore (Tensor, optional): Ground truth bboxes that are
+                labelled as `ignored`, e.g., crowd boxes in COCO.
+            gt_labels (Tensor, optional): Label of gt_bboxes, shape (k, ).
+
+        Returns:
+            :obj:`AssignResult`: The assign result.
+        """
+        if points.shape[0] == 0 or gt_bboxes.shape[0] == 0:
+            raise ValueError('No gt or bboxes')
+        points_xy = points[:, :2]
+        points_stride = points[:, 2]
+        points_lvl = torch.log2(
+            points_stride).int()  # [3...,4...,5...,6...,7...]
+        lvl_min, lvl_max = points_lvl.min(), points_lvl.max()
+        num_gts, num_points = gt_bboxes.shape[0], points.shape[0]
+
+        # assign gt box
+        gt_bboxes_xy = (gt_bboxes[:, :2] + gt_bboxes[:, 2:]) / 2
+        gt_bboxes_wh = (gt_bboxes[:, 2:] - gt_bboxes[:, :2]).clamp(min=1e-6)
+        scale = self.scale
+        gt_bboxes_lvl = ((torch.log2(gt_bboxes_wh[:, 0] / scale) +
+                          torch.log2(gt_bboxes_wh[:, 1] / scale)) / 2).int()
+        gt_bboxes_lvl = torch.clamp(gt_bboxes_lvl, min=lvl_min, max=lvl_max)
+
+        # stores the assigned gt index of each point
+        assigned_gt_inds = points.new_zeros((num_points, ), dtype=torch.long)
+        # stores the assigned gt dist (to this point) of each point
+        assigned_gt_dist = points.new_full((num_points, ), float('inf'))
+        points_range = torch.arange(points.shape[0])
+
+        for idx in range(num_gts):
+            gt_lvl = gt_bboxes_lvl[idx]
+            # get the index of points in this level
+            lvl_idx = gt_lvl == points_lvl
+            points_index = points_range[lvl_idx]
+            # get the points in this level
+            lvl_points = points_xy[lvl_idx, :]
+            # get the center point of gt
+            gt_point = gt_bboxes_xy[[idx], :]
+            # get width and height of gt
+            gt_wh = gt_bboxes_wh[[idx], :]
+            # compute the distance between gt center and
+            #   all points in this level
+            points_gt_dist = ((lvl_points - gt_point) / gt_wh).norm(dim=1)
+            # find the nearest k points to gt center in this level
+            min_dist, min_dist_index = torch.topk(
+                points_gt_dist, self.pos_num, largest=False)
+            # the index of nearest k points to gt center in this level
+            min_dist_points_index = points_index[min_dist_index]
+            # The less_than_recorded_index stores the index
+            #   of min_dist that is less then the assigned_gt_dist. Where
+            #   assigned_gt_dist stores the dist from previous assigned gt
+            #   (if exist) to each point.
+            less_than_recorded_index = min_dist < assigned_gt_dist[
+                min_dist_points_index]
+            # The min_dist_points_index stores the index of points satisfy:
+            #   (1) it is k nearest to current gt center in this level.
+            #   (2) it is closer to current gt center than other gt center.
+            min_dist_points_index = min_dist_points_index[
+                less_than_recorded_index]
+            # assign the result
+            assigned_gt_inds[min_dist_points_index] = idx + 1
+            assigned_gt_dist[min_dist_points_index] = min_dist[
+                less_than_recorded_index]
+
+        if gt_labels is not None:
+            assigned_labels = assigned_gt_inds.new_zeros((num_points, ))
+            pos_inds = torch.nonzero(assigned_gt_inds > 0).squeeze()
+            if pos_inds.numel() > 0:
+                assigned_labels[pos_inds] = gt_labels[
+                    assigned_gt_inds[pos_inds] - 1]
+        else:
+            assigned_labels = None
+
+        return AssignResult(
+            num_gts, assigned_gt_inds, None, labels=assigned_labels)
diff --git a/mmdet/models/anchor_heads/__init__.py b/mmdet/models/anchor_heads/__init__.py
index f5a54ce4cfe1aadf1cf61d2bda714b5413bf013d..5df25d04e16975e71067028f7622d8174eb7a7b7 100644
--- a/mmdet/models/anchor_heads/__init__.py
+++ b/mmdet/models/anchor_heads/__init__.py
@@ -3,11 +3,13 @@ from .fcos_head import FCOSHead
 from .ga_retina_head import GARetinaHead
 from .ga_rpn_head import GARPNHead
 from .guided_anchor_head import FeatureAdaption, GuidedAnchorHead
+from .reppoints_head import RepPointsHead
 from .retina_head import RetinaHead
 from .rpn_head import RPNHead
 from .ssd_head import SSDHead
 
 __all__ = [
     'AnchorHead', 'GuidedAnchorHead', 'FeatureAdaption', 'RPNHead',
-    'GARPNHead', 'RetinaHead', 'GARetinaHead', 'SSDHead', 'FCOSHead'
+    'GARPNHead', 'RetinaHead', 'GARetinaHead', 'SSDHead', 'FCOSHead',
+    'RepPointsHead'
 ]
diff --git a/mmdet/models/anchor_heads/reppoints_head.py b/mmdet/models/anchor_heads/reppoints_head.py
new file mode 100644
index 0000000000000000000000000000000000000000..1ce7abd16f917c1ca07dcf8eb78bc3633eb75704
--- /dev/null
+++ b/mmdet/models/anchor_heads/reppoints_head.py
@@ -0,0 +1,596 @@
+from __future__ import division
+
+import numpy as np
+import torch
+import torch.nn as nn
+from mmcv.cnn import normal_init
+
+from mmdet.core import (PointGenerator, multi_apply, multiclass_nms,
+                        point_target)
+from mmdet.ops import DeformConv
+from ..builder import build_loss
+from ..registry import HEADS
+from ..utils import ConvModule, bias_init_with_prob
+
+
+@HEADS.register_module
+class RepPointsHead(nn.Module):
+    """RepPoint head.
+
+    Args:
+        in_channels (int): Number of channels in the input feature map.
+        feat_channels (int): Number of channels of the feature map.
+        point_feat_channels (int): Number of channels of points features.
+        stacked_convs (int): How many conv layers are used.
+        gradient_mul (float): The multiplier to gradients from
+            points refinement and recognition.
+        point_strides (Iterable): points strides.
+        point_base_scale (int): bbox scale for assigning labels.
+        loss_cls (dict): Config of classification loss.
+        loss_bbox_init (dict): Config of initial points loss.
+        loss_bbox_refine (dict): Config of points loss in refinement.
+        use_grid_points (bool): If we use bounding box representation, the
+        reppoints is represented as grid points on the bounding box.
+        center_init (bool): Whether to use center point assignment.
+        transform_method (str): The methods to transform RepPoints to bbox.
+    """  # noqa: W605
+
+    def __init__(self,
+                 num_classes,
+                 in_channels,
+                 feat_channels=256,
+                 point_feat_channels=256,
+                 stacked_convs=3,
+                 num_points=9,
+                 gradient_mul=0.1,
+                 point_strides=[8, 16, 32, 64, 128],
+                 point_base_scale=4,
+                 conv_cfg=None,
+                 norm_cfg=None,
+                 loss_cls=dict(
+                     type='FocalLoss',
+                     use_sigmoid=True,
+                     gamma=2.0,
+                     alpha=0.25,
+                     loss_weight=1.0),
+                 loss_bbox_init=dict(
+                     type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=0.5),
+                 loss_bbox_refine=dict(
+                     type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
+                 use_grid_points=False,
+                 center_init=True,
+                 transform_method='moment',
+                 moment_mul=0.01):
+        super(RepPointsHead, self).__init__()
+        self.in_channels = in_channels
+        self.num_classes = num_classes
+        self.feat_channels = feat_channels
+        self.point_feat_channels = point_feat_channels
+        self.stacked_convs = stacked_convs
+        self.num_points = num_points
+        self.gradient_mul = gradient_mul
+        self.point_base_scale = point_base_scale
+        self.point_strides = point_strides
+        self.conv_cfg = conv_cfg
+        self.norm_cfg = norm_cfg
+        self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False)
+        self.sampling = loss_cls['type'] not in ['FocalLoss']
+        self.loss_cls = build_loss(loss_cls)
+        self.loss_bbox_init = build_loss(loss_bbox_init)
+        self.loss_bbox_refine = build_loss(loss_bbox_refine)
+        self.use_grid_points = use_grid_points
+        self.center_init = center_init
+        self.transform_method = transform_method
+        if self.transform_method == 'moment':
+            self.moment_transfer = nn.Parameter(
+                data=torch.zeros(2), requires_grad=True)
+            self.moment_mul = moment_mul
+        if self.use_sigmoid_cls:
+            self.cls_out_channels = self.num_classes - 1
+        else:
+            self.cls_out_channels = self.num_classes
+        self.point_generators = [PointGenerator() for _ in self.point_strides]
+        # we use deformable conv to extract points features
+        self.dcn_kernel = int(np.sqrt(num_points))
+        self.dcn_pad = int((self.dcn_kernel - 1) / 2)
+        assert self.dcn_kernel * self.dcn_kernel == num_points, \
+            "The points number should be a square number."
+        assert self.dcn_kernel % 2 == 1, \
+            "The points number should be an odd square number."
+        dcn_base = np.arange(-self.dcn_pad,
+                             self.dcn_pad + 1).astype(np.float64)
+        dcn_base_y = np.repeat(dcn_base, self.dcn_kernel)
+        dcn_base_x = np.tile(dcn_base, self.dcn_kernel)
+        dcn_base_offset = np.stack([dcn_base_y, dcn_base_x], axis=1).reshape(
+            (-1))
+        self.dcn_base_offset = torch.tensor(dcn_base_offset).view(1, -1, 1, 1)
+        self._init_layers()
+
+    def _init_layers(self):
+        self.relu = nn.ReLU(inplace=True)
+        self.cls_convs = nn.ModuleList()
+        self.reg_convs = nn.ModuleList()
+        for i in range(self.stacked_convs):
+            chn = self.in_channels if i == 0 else self.feat_channels
+            self.cls_convs.append(
+                ConvModule(
+                    chn,
+                    self.feat_channels,
+                    3,
+                    stride=1,
+                    padding=1,
+                    conv_cfg=self.conv_cfg,
+                    norm_cfg=self.norm_cfg))
+            self.reg_convs.append(
+                ConvModule(
+                    chn,
+                    self.feat_channels,
+                    3,
+                    stride=1,
+                    padding=1,
+                    conv_cfg=self.conv_cfg,
+                    norm_cfg=self.norm_cfg))
+        pts_out_dim = 4 if self.use_grid_points else 2 * self.num_points
+        self.reppoints_cls_conv = DeformConv(self.feat_channels,
+                                             self.point_feat_channels,
+                                             self.dcn_kernel, 1, self.dcn_pad)
+        self.reppoints_cls_out = nn.Conv2d(self.point_feat_channels,
+                                           self.cls_out_channels, 1, 1, 0)
+        self.reppoints_pts_init_conv = nn.Conv2d(self.feat_channels,
+                                                 self.point_feat_channels, 3,
+                                                 1, 1)
+        self.reppoints_pts_init_out = nn.Conv2d(self.point_feat_channels,
+                                                pts_out_dim, 1, 1, 0)
+        self.reppoints_pts_refine_conv = DeformConv(self.feat_channels,
+                                                    self.point_feat_channels,
+                                                    self.dcn_kernel, 1,
+                                                    self.dcn_pad)
+        self.reppoints_pts_refine_out = nn.Conv2d(self.point_feat_channels,
+                                                  pts_out_dim, 1, 1, 0)
+
+    def init_weights(self):
+        for m in self.cls_convs:
+            normal_init(m.conv, std=0.01)
+        for m in self.reg_convs:
+            normal_init(m.conv, std=0.01)
+        bias_cls = bias_init_with_prob(0.01)
+        normal_init(self.reppoints_cls_conv, std=0.01)
+        normal_init(self.reppoints_cls_out, std=0.01, bias=bias_cls)
+        normal_init(self.reppoints_pts_init_conv, std=0.01)
+        normal_init(self.reppoints_pts_init_out, std=0.01)
+        normal_init(self.reppoints_pts_refine_conv, std=0.01)
+        normal_init(self.reppoints_pts_refine_out, std=0.01)
+
+    def points2bbox(self, pts, y_first=True):
+        """
+        Converting the points set into bounding box.
+        :param pts: the input points sets (fields), each points
+            set (fields) is represented as 2n scalar.
+        :param y_first: if y_fisrt=True, the point set is represented as
+            [y1, x1, y2, x2 ... yn, xn], otherwise the point set is
+            represented as [x1, y1, x2, y2 ... xn, yn].
+        :return: each points set is converting to a bbox [x1, y1, x2, y2].
+        """
+        pts_reshape = pts.view(pts.shape[0], -1, 2, *pts.shape[2:])
+        pts_y = pts_reshape[:, :, 0, ...] if y_first else pts_reshape[:, :, 1,
+                                                                      ...]
+        pts_x = pts_reshape[:, :, 1, ...] if y_first else pts_reshape[:, :, 0,
+                                                                      ...]
+        if self.transform_method == 'minmax':
+            bbox_left = pts_x.min(dim=1, keepdim=True)[0]
+            bbox_right = pts_x.max(dim=1, keepdim=True)[0]
+            bbox_up = pts_y.min(dim=1, keepdim=True)[0]
+            bbox_bottom = pts_y.max(dim=1, keepdim=True)[0]
+            bbox = torch.cat([bbox_left, bbox_up, bbox_right, bbox_bottom],
+                             dim=1)
+        elif self.transform_method == 'partial_minmax':
+            pts_y = pts_y[:, :4, ...]
+            pts_x = pts_x[:, :4, ...]
+            bbox_left = pts_x.min(dim=1, keepdim=True)[0]
+            bbox_right = pts_x.max(dim=1, keepdim=True)[0]
+            bbox_up = pts_y.min(dim=1, keepdim=True)[0]
+            bbox_bottom = pts_y.max(dim=1, keepdim=True)[0]
+            bbox = torch.cat([bbox_left, bbox_up, bbox_right, bbox_bottom],
+                             dim=1)
+        elif self.transform_method == 'moment':
+            pts_y_mean = pts_y.mean(dim=1, keepdim=True)
+            pts_x_mean = pts_x.mean(dim=1, keepdim=True)
+            pts_y_std = torch.std(pts_y - pts_y_mean, dim=1, keepdim=True)
+            pts_x_std = torch.std(pts_x - pts_x_mean, dim=1, keepdim=True)
+            moment_transfer = (self.moment_transfer * self.moment_mul) + (
+                self.moment_transfer.detach() * (1 - self.moment_mul))
+            moment_width_transfer = moment_transfer[0]
+            moment_height_transfer = moment_transfer[1]
+            half_width = pts_x_std * torch.exp(moment_width_transfer)
+            half_height = pts_y_std * torch.exp(moment_height_transfer)
+            bbox = torch.cat([
+                pts_x_mean - half_width, pts_y_mean - half_height,
+                pts_x_mean + half_width, pts_y_mean + half_height
+            ],
+                             dim=1)
+        else:
+            raise NotImplementedError
+        return bbox
+
+    def gen_grid_from_reg(self, reg, previous_boxes):
+        """
+        Base on the previous bboxes and regression values, we compute the
+            regressed bboxes and generate the grids on the bboxes.
+        :param reg: the regression value to previous bboxes.
+        :param previous_boxes: previous bboxes.
+        :return: generate grids on the regressed bboxes.
+        """
+        b, _, h, w = reg.shape
+        bxy = (previous_boxes[:, :2, ...] + previous_boxes[:, 2:, ...]) / 2.
+        bwh = (previous_boxes[:, 2:, ...] -
+               previous_boxes[:, :2, ...]).clamp(min=1e-6)
+        grid_topleft = bxy + bwh * reg[:, :2, ...] - 0.5 * bwh * torch.exp(
+            reg[:, 2:, ...])
+        grid_wh = bwh * torch.exp(reg[:, 2:, ...])
+        grid_left = grid_topleft[:, [0], ...]
+        grid_top = grid_topleft[:, [1], ...]
+        grid_width = grid_wh[:, [0], ...]
+        grid_height = grid_wh[:, [1], ...]
+        intervel = torch.linspace(0., 1., self.dcn_kernel).view(
+            1, self.dcn_kernel, 1, 1).type_as(reg)
+        grid_x = grid_left + grid_width * intervel
+        grid_x = grid_x.unsqueeze(1).repeat(1, self.dcn_kernel, 1, 1, 1)
+        grid_x = grid_x.view(b, -1, h, w)
+        grid_y = grid_top + grid_height * intervel
+        grid_y = grid_y.unsqueeze(2).repeat(1, 1, self.dcn_kernel, 1, 1)
+        grid_y = grid_y.view(b, -1, h, w)
+        grid_yx = torch.stack([grid_y, grid_x], dim=2)
+        grid_yx = grid_yx.view(b, -1, h, w)
+        regressed_bbox = torch.cat([
+            grid_left, grid_top, grid_left + grid_width, grid_top + grid_height
+        ], 1)
+        return grid_yx, regressed_bbox
+
+    def forward_single(self, x):
+        dcn_base_offset = self.dcn_base_offset.type_as(x)
+        # If we use center_init, the initial reppoints is from center points.
+        # If we use bounding bbox representation, the initial reppoints is
+        #   from regular grid placed on a pre-defined bbox.
+        if self.use_grid_points or not self.center_init:
+            scale = self.point_base_scale / 2
+            points_init = dcn_base_offset / dcn_base_offset.max() * scale
+            bbox_init = x.new_tensor([-scale, -scale, scale,
+                                      scale]).view(1, 4, 1, 1)
+        else:
+            points_init = 0
+        cls_feat = x
+        pts_feat = x
+        for cls_conv in self.cls_convs:
+            cls_feat = cls_conv(cls_feat)
+        for reg_conv in self.reg_convs:
+            pts_feat = reg_conv(pts_feat)
+        # initialize reppoints
+        pts_out_init = self.reppoints_pts_init_out(
+            self.relu(self.reppoints_pts_init_conv(pts_feat)))
+        if self.use_grid_points:
+            pts_out_init, bbox_out_init = self.gen_grid_from_reg(
+                pts_out_init, bbox_init.detach())
+        else:
+            pts_out_init = pts_out_init + points_init
+        # refine and classify reppoints
+        pts_out_init_grad_mul = (1 - self.gradient_mul) * pts_out_init.detach(
+        ) + self.gradient_mul * pts_out_init
+        dcn_offset = pts_out_init_grad_mul - dcn_base_offset
+        cls_out = self.reppoints_cls_out(
+            self.relu(self.reppoints_cls_conv(cls_feat, dcn_offset)))
+        pts_out_refine = self.reppoints_pts_refine_out(
+            self.relu(self.reppoints_pts_refine_conv(pts_feat, dcn_offset)))
+        if self.use_grid_points:
+            pts_out_refine, bbox_out_refine = self.gen_grid_from_reg(
+                pts_out_refine, bbox_out_init.detach())
+        else:
+            pts_out_refine = pts_out_refine + pts_out_init.detach()
+        return cls_out, pts_out_init, pts_out_refine
+
+    def forward(self, feats):
+        return multi_apply(self.forward_single, feats)
+
+    def get_points(self, featmap_sizes, img_metas):
+        """Get points according to feature map sizes.
+
+        Args:
+            featmap_sizes (list[tuple]): Multi-level feature map sizes.
+            img_metas (list[dict]): Image meta info.
+
+        Returns:
+            tuple: points of each image, valid flags of each image
+        """
+        num_imgs = len(img_metas)
+        num_levels = len(featmap_sizes)
+
+        # since feature map sizes of all images are the same, we only compute
+        # points center for one time
+        multi_level_points = []
+        for i in range(num_levels):
+            points = self.point_generators[i].grid_points(
+                featmap_sizes[i], self.point_strides[i])
+            multi_level_points.append(points)
+        points_list = [[point.clone() for point in multi_level_points]
+                       for _ in range(num_imgs)]
+
+        # for each image, we compute valid flags of multi level grids
+        valid_flag_list = []
+        for img_id, img_meta in enumerate(img_metas):
+            multi_level_flags = []
+            for i in range(num_levels):
+                point_stride = self.point_strides[i]
+                feat_h, feat_w = featmap_sizes[i]
+                h, w, _ = img_meta['pad_shape']
+                valid_feat_h = min(int(np.ceil(h / point_stride)), feat_h)
+                valid_feat_w = min(int(np.ceil(w / point_stride)), feat_w)
+                flags = self.point_generators[i].valid_flags(
+                    (feat_h, feat_w), (valid_feat_h, valid_feat_w))
+                multi_level_flags.append(flags)
+            valid_flag_list.append(multi_level_flags)
+
+        return points_list, valid_flag_list
+
+    def centers_to_bboxes(self, point_list):
+        """Get bboxes according to center points. Only used in MaxIOUAssigner.
+        """
+        bbox_list = []
+        for i_img, point in enumerate(point_list):
+            bbox = []
+            for i_lvl in range(len(self.point_strides)):
+                scale = self.point_base_scale * self.point_strides[i_lvl] * 0.5
+                bbox_shift = torch.Tensor([-scale, -scale, scale,
+                                           scale]).view(1, 4).type_as(point[0])
+                bbox_center = torch.cat(
+                    [point[i_lvl][:, :2], point[i_lvl][:, :2]], dim=1)
+                bbox.append(bbox_center + bbox_shift)
+            bbox_list.append(bbox)
+        return bbox_list
+
+    def offset_to_pts(self, center_list, pred_list):
+        """Change from point offset to point coordinate.
+        """
+        pts_list = []
+        for i_lvl in range(len(self.point_strides)):
+            pts_lvl = []
+            for i_img in range(len(center_list)):
+                pts_center = center_list[i_img][i_lvl][:, :2].repeat(
+                    1, self.num_points)
+                pts_shift = pred_list[i_lvl][i_img]
+                yx_pts_shift = pts_shift.permute(1, 2, 0).view(
+                    -1, 2 * self.num_points)
+                y_pts_shift = yx_pts_shift[..., 0::2]
+                x_pts_shift = yx_pts_shift[..., 1::2]
+                xy_pts_shift = torch.stack([x_pts_shift, y_pts_shift], -1)
+                xy_pts_shift = xy_pts_shift.view(*yx_pts_shift.shape[:-1], -1)
+                pts = xy_pts_shift * self.point_strides[i_lvl] + pts_center
+                pts_lvl.append(pts)
+            pts_lvl = torch.stack(pts_lvl, 0)
+            pts_list.append(pts_lvl)
+        return pts_list
+
+    def loss_single(self, cls_score, pts_pred_init, pts_pred_refine, labels,
+                    label_weights, bbox_gt_init, bbox_weights_init,
+                    bbox_gt_refine, bbox_weights_refine, stride,
+                    num_total_samples_init, num_total_samples_refine):
+        # classification loss
+        labels = labels.reshape(-1)
+        label_weights = label_weights.reshape(-1)
+        cls_score = cls_score.permute(0, 2, 3,
+                                      1).reshape(-1, self.cls_out_channels)
+        loss_cls = self.loss_cls(
+            cls_score,
+            labels,
+            label_weights,
+            avg_factor=num_total_samples_refine)
+
+        # points loss
+        bbox_gt_init = bbox_gt_init.reshape(-1, 4)
+        bbox_weights_init = bbox_weights_init.reshape(-1, 4)
+        bbox_pred_init = self.points2bbox(
+            pts_pred_init.reshape(-1, 2 * self.num_points), y_first=False)
+        bbox_gt_refine = bbox_gt_refine.reshape(-1, 4)
+        bbox_weights_refine = bbox_weights_refine.reshape(-1, 4)
+        bbox_pred_refine = self.points2bbox(
+            pts_pred_refine.reshape(-1, 2 * self.num_points), y_first=False)
+        normalize_term = self.point_base_scale * stride
+        loss_pts_init = self.loss_bbox_init(
+            bbox_pred_init / normalize_term,
+            bbox_gt_init / normalize_term,
+            bbox_weights_init,
+            avg_factor=num_total_samples_init)
+        loss_pts_refine = self.loss_bbox_refine(
+            bbox_pred_refine / normalize_term,
+            bbox_gt_refine / normalize_term,
+            bbox_weights_refine,
+            avg_factor=num_total_samples_refine)
+        return loss_cls, loss_pts_init, loss_pts_refine
+
+    def loss(self,
+             cls_scores,
+             pts_preds_init,
+             pts_preds_refine,
+             gt_bboxes,
+             gt_labels,
+             img_metas,
+             cfg,
+             gt_bboxes_ignore=None):
+        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
+        assert len(featmap_sizes) == len(self.point_generators)
+        label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1
+
+        # target for initial stage
+        center_list, valid_flag_list = self.get_points(featmap_sizes,
+                                                       img_metas)
+        pts_coordinate_preds_init = self.offset_to_pts(center_list,
+                                                       pts_preds_init)
+        if cfg.init.assigner['type'] == 'PointAssigner':
+            # Assign target for center list
+            candidate_list = center_list
+        else:
+            # transform center list to bbox list and
+            #   assign target for bbox list
+            bbox_list = self.centers_to_bboxes(center_list)
+            candidate_list = bbox_list
+        cls_reg_targets_init = point_target(
+            candidate_list,
+            valid_flag_list,
+            gt_bboxes,
+            img_metas,
+            cfg.init,
+            gt_bboxes_ignore_list=gt_bboxes_ignore,
+            gt_labels_list=gt_labels,
+            label_channels=label_channels,
+            sampling=self.sampling)
+        (*_, bbox_gt_list_init, candidate_list_init, bbox_weights_list_init,
+         num_total_pos_init, num_total_neg_init) = cls_reg_targets_init
+        num_total_samples_init = (
+            num_total_pos_init +
+            num_total_neg_init if self.sampling else num_total_pos_init)
+
+        # target for refinement stage
+        center_list, valid_flag_list = self.get_points(featmap_sizes,
+                                                       img_metas)
+        pts_coordinate_preds_refine = self.offset_to_pts(
+            center_list, pts_preds_refine)
+        bbox_list = []
+        for i_img, center in enumerate(center_list):
+            bbox = []
+            for i_lvl in range(len(pts_preds_refine)):
+                bbox_preds_init = self.points2bbox(
+                    pts_preds_init[i_lvl].detach())
+                bbox_shift = bbox_preds_init * self.point_strides[i_lvl]
+                bbox_center = torch.cat(
+                    [center[i_lvl][:, :2], center[i_lvl][:, :2]], dim=1)
+                bbox.append(bbox_center +
+                            bbox_shift[i_img].permute(1, 2, 0).reshape(-1, 4))
+            bbox_list.append(bbox)
+        cls_reg_targets_refine = point_target(
+            bbox_list,
+            valid_flag_list,
+            gt_bboxes,
+            img_metas,
+            cfg.refine,
+            gt_bboxes_ignore_list=gt_bboxes_ignore,
+            gt_labels_list=gt_labels,
+            label_channels=label_channels,
+            sampling=self.sampling)
+        (labels_list, label_weights_list, bbox_gt_list_refine,
+         candidate_list_refine, bbox_weights_list_refine, num_total_pos_refine,
+         num_total_neg_refine) = cls_reg_targets_refine
+        num_total_samples_refine = (
+            num_total_pos_refine +
+            num_total_neg_refine if self.sampling else num_total_pos_refine)
+
+        # compute loss
+        losses_cls, losses_pts_init, losses_pts_refine = multi_apply(
+            self.loss_single,
+            cls_scores,
+            pts_coordinate_preds_init,
+            pts_coordinate_preds_refine,
+            labels_list,
+            label_weights_list,
+            bbox_gt_list_init,
+            bbox_weights_list_init,
+            bbox_gt_list_refine,
+            bbox_weights_list_refine,
+            self.point_strides,
+            num_total_samples_init=num_total_samples_init,
+            num_total_samples_refine=num_total_samples_refine)
+        loss_dict_all = {
+            'loss_cls': losses_cls,
+            'loss_pts_init': losses_pts_init,
+            'loss_pts_refine': losses_pts_refine
+        }
+        return loss_dict_all
+
+    def get_bboxes(self,
+                   cls_scores,
+                   pts_preds_init,
+                   pts_preds_refine,
+                   img_metas,
+                   cfg,
+                   rescale=False,
+                   nms=True):
+        assert len(cls_scores) == len(pts_preds_refine)
+        bbox_preds_refine = [
+            self.points2bbox(pts_pred_refine)
+            for pts_pred_refine in pts_preds_refine
+        ]
+        num_levels = len(cls_scores)
+        mlvl_points = [
+            self.point_generators[i].grid_points(cls_scores[i].size()[-2:],
+                                                 self.point_strides[i])
+            for i in range(num_levels)
+        ]
+        result_list = []
+        for img_id in range(len(img_metas)):
+            cls_score_list = [
+                cls_scores[i][img_id].detach() for i in range(num_levels)
+            ]
+            bbox_pred_list = [
+                bbox_preds_refine[i][img_id].detach()
+                for i in range(num_levels)
+            ]
+            img_shape = img_metas[img_id]['img_shape']
+            scale_factor = img_metas[img_id]['scale_factor']
+            proposals = self.get_bboxes_single(cls_score_list, bbox_pred_list,
+                                               mlvl_points, img_shape,
+                                               scale_factor, cfg, rescale, nms)
+            result_list.append(proposals)
+        return result_list
+
+    def get_bboxes_single(self,
+                          cls_scores,
+                          bbox_preds,
+                          mlvl_points,
+                          img_shape,
+                          scale_factor,
+                          cfg,
+                          rescale=False,
+                          nms=True):
+        assert len(cls_scores) == len(bbox_preds) == len(mlvl_points)
+        mlvl_bboxes = []
+        mlvl_scores = []
+        for i_lvl, (cls_score, bbox_pred, points) in enumerate(
+                zip(cls_scores, bbox_preds, mlvl_points)):
+            assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
+            cls_score = cls_score.permute(1, 2,
+                                          0).reshape(-1, self.cls_out_channels)
+            if self.use_sigmoid_cls:
+                scores = cls_score.sigmoid()
+            else:
+                scores = cls_score.softmax(-1)
+            bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4)
+            nms_pre = cfg.get('nms_pre', -1)
+            if nms_pre > 0 and scores.shape[0] > nms_pre:
+                if self.use_sigmoid_cls:
+                    max_scores, _ = scores.max(dim=1)
+                else:
+                    max_scores, _ = scores[:, 1:].max(dim=1)
+                _, topk_inds = max_scores.topk(nms_pre)
+                points = points[topk_inds, :]
+                bbox_pred = bbox_pred[topk_inds, :]
+                scores = scores[topk_inds, :]
+            bbox_pos_center = torch.cat([points[:, :2], points[:, :2]], dim=1)
+            bboxes = bbox_pred * self.point_strides[i_lvl] + bbox_pos_center
+            x1 = bboxes[:, 0].clamp(min=0, max=img_shape[1])
+            y1 = bboxes[:, 1].clamp(min=0, max=img_shape[0])
+            x2 = bboxes[:, 2].clamp(min=0, max=img_shape[1])
+            y2 = bboxes[:, 3].clamp(min=0, max=img_shape[0])
+            bboxes = torch.stack([x1, y1, x2, y2], dim=-1)
+            mlvl_bboxes.append(bboxes)
+            mlvl_scores.append(scores)
+        mlvl_bboxes = torch.cat(mlvl_bboxes)
+        if rescale:
+            mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor)
+        mlvl_scores = torch.cat(mlvl_scores)
+        if self.use_sigmoid_cls:
+            padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1)
+            mlvl_scores = torch.cat([padding, mlvl_scores], dim=1)
+        if nms:
+            det_bboxes, det_labels = multiclass_nms(mlvl_bboxes, mlvl_scores,
+                                                    cfg.score_thr, cfg.nms,
+                                                    cfg.max_per_img)
+            return det_bboxes, det_labels
+        else:
+            return mlvl_bboxes, mlvl_scores
diff --git a/mmdet/models/detectors/__init__.py b/mmdet/models/detectors/__init__.py
index d613a3bf7bdb3e95fa165a37c3036ecad36b4b34..189c823bdec5f0cbf0d3e157702c53c5ed75c934 100644
--- a/mmdet/models/detectors/__init__.py
+++ b/mmdet/models/detectors/__init__.py
@@ -8,6 +8,7 @@ from .grid_rcnn import GridRCNN
 from .htc import HybridTaskCascade
 from .mask_rcnn import MaskRCNN
 from .mask_scoring_rcnn import MaskScoringRCNN
+from .reppoints_detector import RepPointsDetector
 from .retinanet import RetinaNet
 from .rpn import RPN
 from .single_stage import SingleStageDetector
@@ -16,5 +17,6 @@ from .two_stage import TwoStageDetector
 __all__ = [
     'BaseDetector', 'SingleStageDetector', 'TwoStageDetector', 'RPN',
     'FastRCNN', 'FasterRCNN', 'MaskRCNN', 'CascadeRCNN', 'HybridTaskCascade',
-    'DoubleHeadRCNN', 'RetinaNet', 'FCOS', 'GridRCNN', 'MaskScoringRCNN'
+    'DoubleHeadRCNN', 'RetinaNet', 'FCOS', 'GridRCNN', 'MaskScoringRCNN',
+    'RepPointsDetector'
 ]
diff --git a/mmdet/models/detectors/reppoints_detector.py b/mmdet/models/detectors/reppoints_detector.py
new file mode 100644
index 0000000000000000000000000000000000000000..53d698f1f69a9aeae3cb139820efc3e5c033142a
--- /dev/null
+++ b/mmdet/models/detectors/reppoints_detector.py
@@ -0,0 +1,81 @@
+import torch
+
+from mmdet.core import bbox2result, bbox_mapping_back, multiclass_nms
+from ..registry import DETECTORS
+from .single_stage import SingleStageDetector
+
+
+@DETECTORS.register_module
+class RepPointsDetector(SingleStageDetector):
+    """RepPoints: Point Set Representation for Object Detection.
+
+        This detector is the implementation of:
+        - RepPoints detector (https://arxiv.org/pdf/1904.11490)
+    """
+
+    def __init__(self,
+                 backbone,
+                 neck,
+                 bbox_head,
+                 train_cfg=None,
+                 test_cfg=None,
+                 pretrained=None):
+        super(RepPointsDetector,
+              self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg,
+                             pretrained)
+
+    def merge_aug_results(self, aug_bboxes, aug_scores, img_metas):
+        """Merge augmented detection bboxes and scores.
+
+        Args:
+            aug_bboxes (list[Tensor]): shape (n, 4*#class)
+            aug_scores (list[Tensor] or None): shape (n, #class)
+            img_shapes (list[Tensor]): shape (3, ).
+
+        Returns:
+            tuple: (bboxes, scores)
+        """
+        recovered_bboxes = []
+        for bboxes, img_info in zip(aug_bboxes, img_metas):
+            img_shape = img_info[0]['img_shape']
+            scale_factor = img_info[0]['scale_factor']
+            flip = img_info[0]['flip']
+            bboxes = bbox_mapping_back(bboxes, img_shape, scale_factor, flip)
+            recovered_bboxes.append(bboxes)
+        bboxes = torch.cat(recovered_bboxes, dim=0)
+        if aug_scores is None:
+            return bboxes
+        else:
+            scores = torch.cat(aug_scores, dim=0)
+            return bboxes, scores
+
+    def aug_test(self, imgs, img_metas, rescale=False):
+        # recompute feats to save memory
+        feats = self.extract_feats(imgs)
+
+        aug_bboxes = []
+        aug_scores = []
+        for x, img_meta in zip(feats, img_metas):
+            # only one image in the batch
+            outs = self.bbox_head(x)
+            bbox_inputs = outs + (img_meta, self.test_cfg, False, False)
+            det_bboxes, det_scores = self.bbox_head.get_bboxes(*bbox_inputs)[0]
+            aug_bboxes.append(det_bboxes)
+            aug_scores.append(det_scores)
+
+        # after merging, bboxes will be rescaled to the original image size
+        merged_bboxes, merged_scores = self.merge_aug_results(
+            aug_bboxes, aug_scores, img_metas)
+        det_bboxes, det_labels = multiclass_nms(merged_bboxes, merged_scores,
+                                                self.test_cfg.score_thr,
+                                                self.test_cfg.nms,
+                                                self.test_cfg.max_per_img)
+
+        if rescale:
+            _det_bboxes = det_bboxes
+        else:
+            _det_bboxes = det_bboxes.clone()
+            _det_bboxes[:, :4] *= img_metas[0][0]['scale_factor']
+        bbox_results = bbox2result(_det_bboxes, det_labels,
+                                   self.bbox_head.num_classes)
+        return bbox_results