From b5a952c51110f2ba6f9e5ba8cbad1342393a0abb Mon Sep 17 00:00:00 2001
From: Kai Chen <chenkaidev@gmail.com>
Date: Tue, 21 May 2019 11:04:26 +0800
Subject: [PATCH] Add training from scratch with GN (#658)

* add training from scratch with GN

* rename and format

* change resnet initialization

* update scratch results
---
 configs/scratch/README.md                     |  22 ++
 .../scratch_faster_rcnn_r50_fpn_gn_6x.py      | 173 ++++++++++++++++
 .../scratch_mask_rcnn_r50_fpn_gn_6x.py        | 188 ++++++++++++++++++
 3 files changed, 383 insertions(+)
 create mode 100644 configs/scratch/README.md
 create mode 100644 configs/scratch/scratch_faster_rcnn_r50_fpn_gn_6x.py
 create mode 100644 configs/scratch/scratch_mask_rcnn_r50_fpn_gn_6x.py

diff --git a/configs/scratch/README.md b/configs/scratch/README.md
new file mode 100644
index 0000000..7ae532b
--- /dev/null
+++ b/configs/scratch/README.md
@@ -0,0 +1,22 @@
+# Rethinking ImageNet Pre-training
+
+## Introduction
+
+```
+@article{he2018rethinking,
+  title={Rethinking imagenet pre-training},
+  author={He, Kaiming and Girshick, Ross and Doll{\'a}r, Piotr},
+  journal={arXiv preprint arXiv:1811.08883},
+  year={2018}
+}
+```
+
+## Results and Models
+
+| Model        | Backbone  | Style   | Lr schd | box AP | mask AP | Download |
+|:------------:|:---------:|:-------:|:-------:|:------:|:-------:|:--------:|
+| Faster R-CNN | R-50-FPN  | pytorch | 6x      | 40.1   | -       | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/scratch/scratch_faster_rcnn_r50_fpn_gn_6x-20190515-ff554978.pth) |
+| Mask R-CNN   | R-50-FPN  | pytorch | 6x      | 41.0   | 37.4    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/scratch/scratch_mask_rcnn_r50_fpn_gn_6x_20190515-96743f5e.pth) |
+
+Note:
+- The above models are trained with 16 GPUs.
\ No newline at end of file
diff --git a/configs/scratch/scratch_faster_rcnn_r50_fpn_gn_6x.py b/configs/scratch/scratch_faster_rcnn_r50_fpn_gn_6x.py
new file mode 100644
index 0000000..d4da529
--- /dev/null
+++ b/configs/scratch/scratch_faster_rcnn_r50_fpn_gn_6x.py
@@ -0,0 +1,173 @@
+# model settings
+norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
+model = dict(
+    type='FasterRCNN',
+    pretrained=None,
+    backbone=dict(
+        type='ResNet',
+        depth=50,
+        num_stages=4,
+        out_indices=(0, 1, 2, 3),
+        frozen_stages=-1,
+        style='pytorch',
+        zero_init_residual=False,
+        norm_cfg=norm_cfg),
+    neck=dict(
+        type='FPN',
+        in_channels=[256, 512, 1024, 2048],
+        out_channels=256,
+        num_outs=5,
+        norm_cfg=norm_cfg),
+    rpn_head=dict(
+        type='RPNHead',
+        in_channels=256,
+        feat_channels=256,
+        anchor_scales=[8],
+        anchor_ratios=[0.5, 1.0, 2.0],
+        anchor_strides=[4, 8, 16, 32, 64],
+        target_means=[.0, .0, .0, .0],
+        target_stds=[1.0, 1.0, 1.0, 1.0],
+        use_sigmoid_cls=True),
+    bbox_roi_extractor=dict(
+        type='SingleRoIExtractor',
+        roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
+        out_channels=256,
+        featmap_strides=[4, 8, 16, 32]),
+    bbox_head=dict(
+        type='ConvFCBBoxHead',
+        num_shared_convs=4,
+        num_shared_fcs=1,
+        in_channels=256,
+        conv_out_channels=256,
+        fc_out_channels=1024,
+        roi_feat_size=7,
+        num_classes=81,
+        target_means=[0., 0., 0., 0.],
+        target_stds=[0.1, 0.1, 0.2, 0.2],
+        reg_class_agnostic=False,
+        norm_cfg=norm_cfg))
+# model training and testing settings
+train_cfg = dict(
+    rpn=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.7,
+            neg_iou_thr=0.3,
+            min_pos_iou=0.3,
+            ignore_iof_thr=-1),
+        sampler=dict(
+            type='RandomSampler',
+            num=256,
+            pos_fraction=0.5,
+            neg_pos_ub=-1,
+            add_gt_as_proposals=False),
+        allowed_border=0,
+        pos_weight=-1,
+        smoothl1_beta=1 / 9.0,
+        debug=False),
+    rpn_proposal=dict(
+        nms_across_levels=False,
+        nms_pre=2000,
+        nms_post=2000,
+        max_num=2000,
+        nms_thr=0.7,
+        min_bbox_size=0),
+    rcnn=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.5,
+            neg_iou_thr=0.5,
+            min_pos_iou=0.5,
+            ignore_iof_thr=-1),
+        sampler=dict(
+            type='RandomSampler',
+            num=512,
+            pos_fraction=0.25,
+            neg_pos_ub=-1,
+            add_gt_as_proposals=True),
+        mask_size=28,
+        pos_weight=-1,
+        debug=False))
+test_cfg = dict(
+    rpn=dict(
+        nms_across_levels=False,
+        nms_pre=1000,
+        nms_post=1000,
+        max_num=1000,
+        nms_thr=0.7,
+        min_bbox_size=0),
+    rcnn=dict(
+        score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100))
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+data = dict(
+    imgs_per_gpu=2,
+    workers_per_gpu=2,
+    train=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_train2017.json',
+        img_prefix=data_root + 'train2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0.5,
+        with_mask=False,
+        with_crowd=True,
+        with_label=True),
+    val=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=False,
+        with_crowd=True,
+        with_label=True),
+    test=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=False,
+        with_label=False,
+        test_mode=True))
+# optimizer
+optimizer = dict(
+    type='SGD',
+    lr=0.02,
+    momentum=0.9,
+    weight_decay=0.0001,
+    paramwise_options=dict(norm_decay_mult=0))
+optimizer_config = dict(grad_clip=None)
+# learning policy
+lr_config = dict(
+    policy='step',
+    warmup='linear',
+    warmup_iters=500,
+    warmup_ratio=0.1,
+    step=[65, 71])
+checkpoint_config = dict(interval=1)
+# yapf:disable
+log_config = dict(
+    interval=50,
+    hooks=[
+        dict(type='TextLoggerHook'),
+        # dict(type='TensorboardLoggerHook')
+    ])
+# yapf:enable
+# runtime settings
+total_epochs = 73
+dist_params = dict(backend='nccl')
+log_level = 'INFO'
+work_dir = './work_dirs/scratch_faster_rcnn_r50_fpn_gn_6x'
+load_from = None
+resume_from = None
+workflow = [('train', 1)]
diff --git a/configs/scratch/scratch_mask_rcnn_r50_fpn_gn_6x.py b/configs/scratch/scratch_mask_rcnn_r50_fpn_gn_6x.py
new file mode 100644
index 0000000..63d21c8
--- /dev/null
+++ b/configs/scratch/scratch_mask_rcnn_r50_fpn_gn_6x.py
@@ -0,0 +1,188 @@
+# model settings
+norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
+model = dict(
+    type='MaskRCNN',
+    pretrained=None,
+    backbone=dict(
+        type='ResNet',
+        depth=50,
+        num_stages=4,
+        out_indices=(0, 1, 2, 3),
+        frozen_stages=-1,
+        style='pytorch',
+        zero_init_residual=False,
+        norm_cfg=norm_cfg),
+    neck=dict(
+        type='FPN',
+        in_channels=[256, 512, 1024, 2048],
+        out_channels=256,
+        num_outs=5,
+        norm_cfg=norm_cfg),
+    rpn_head=dict(
+        type='RPNHead',
+        in_channels=256,
+        feat_channels=256,
+        anchor_scales=[8],
+        anchor_ratios=[0.5, 1.0, 2.0],
+        anchor_strides=[4, 8, 16, 32, 64],
+        target_means=[.0, .0, .0, .0],
+        target_stds=[1.0, 1.0, 1.0, 1.0],
+        use_sigmoid_cls=True),
+    bbox_roi_extractor=dict(
+        type='SingleRoIExtractor',
+        roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
+        out_channels=256,
+        featmap_strides=[4, 8, 16, 32]),
+    bbox_head=dict(
+        type='ConvFCBBoxHead',
+        num_shared_convs=4,
+        num_shared_fcs=1,
+        in_channels=256,
+        conv_out_channels=256,
+        fc_out_channels=1024,
+        roi_feat_size=7,
+        num_classes=81,
+        target_means=[0., 0., 0., 0.],
+        target_stds=[0.1, 0.1, 0.2, 0.2],
+        reg_class_agnostic=False,
+        norm_cfg=norm_cfg),
+    mask_roi_extractor=dict(
+        type='SingleRoIExtractor',
+        roi_layer=dict(type='RoIAlign', out_size=14, sample_num=2),
+        out_channels=256,
+        featmap_strides=[4, 8, 16, 32]),
+    mask_head=dict(
+        type='FCNMaskHead',
+        num_convs=4,
+        in_channels=256,
+        conv_out_channels=256,
+        num_classes=81,
+        norm_cfg=norm_cfg))
+# model training and testing settings
+train_cfg = dict(
+    rpn=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.7,
+            neg_iou_thr=0.3,
+            min_pos_iou=0.3,
+            ignore_iof_thr=-1),
+        sampler=dict(
+            type='RandomSampler',
+            num=256,
+            pos_fraction=0.5,
+            neg_pos_ub=-1,
+            add_gt_as_proposals=False),
+        allowed_border=0,
+        pos_weight=-1,
+        smoothl1_beta=1 / 9.0,
+        debug=False),
+    rpn_proposal=dict(
+        nms_across_levels=False,
+        nms_pre=2000,
+        nms_post=2000,
+        max_num=2000,
+        nms_thr=0.7,
+        min_bbox_size=0),
+    rcnn=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.5,
+            neg_iou_thr=0.5,
+            min_pos_iou=0.5,
+            ignore_iof_thr=-1),
+        sampler=dict(
+            type='RandomSampler',
+            num=512,
+            pos_fraction=0.25,
+            neg_pos_ub=-1,
+            add_gt_as_proposals=True),
+        mask_size=28,
+        pos_weight=-1,
+        debug=False))
+test_cfg = dict(
+    rpn=dict(
+        nms_across_levels=False,
+        nms_pre=1000,
+        nms_post=1000,
+        max_num=1000,
+        nms_thr=0.7,
+        min_bbox_size=0),
+    rcnn=dict(
+        score_thr=0.05,
+        nms=dict(type='nms', iou_thr=0.5),
+        max_per_img=100,
+        mask_thr_binary=0.5))
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+data = dict(
+    imgs_per_gpu=2,
+    workers_per_gpu=2,
+    train=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_train2017.json',
+        img_prefix=data_root + 'train2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0.5,
+        with_mask=True,
+        with_crowd=True,
+        with_label=True),
+    val=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=True,
+        with_crowd=True,
+        with_label=True),
+    test=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=False,
+        with_label=False,
+        test_mode=True))
+# optimizer
+optimizer = dict(
+    type='SGD',
+    lr=0.02,
+    momentum=0.9,
+    weight_decay=0.0001,
+    paramwise_options=dict(norm_decay_mult=0))
+optimizer_config = dict(grad_clip=None)
+# learning policy
+lr_config = dict(
+    policy='step',
+    warmup='linear',
+    warmup_iters=500,
+    warmup_ratio=0.1,
+    step=[65, 71])
+checkpoint_config = dict(interval=1)
+# yapf:disable
+log_config = dict(
+    interval=50,
+    hooks=[
+        dict(type='TextLoggerHook'),
+        # dict(type='TensorboardLoggerHook')
+    ])
+# yapf:enable
+# runtime settings
+total_epochs = 73
+dist_params = dict(backend='nccl')
+log_level = 'INFO'
+work_dir = './work_dirs/scratch_mask_rcnn_r50_fpn_gn_6x'
+load_from = None
+resume_from = None
+workflow = [('train', 1)]
-- 
GitLab