diff --git a/configs/foveabox/README.md b/configs/foveabox/README.md new file mode 100644 index 0000000000000000000000000000000000000000..b4d77e648a1d6a3cbdb1851248a6b41970881099 --- /dev/null +++ b/configs/foveabox/README.md @@ -0,0 +1,36 @@ +# FoveaBox: Beyond Anchor-based Object Detector + +FoveaBox is an accurate, flexible and completely anchor-free object detection system for object detection framework, as presented in our paper [https://arxiv.org/abs/1904.03797](https://arxiv.org/abs/1904.03797): +Different from previous anchor-based methods, FoveaBox directly learns the object existing possibility and the bounding box coordinates without anchor reference. This is achieved by: (a) predicting category-sensitive semantic maps for the object existing possibility, and (b) producing category-agnostic bounding box for each position that potentially contains an object. + +## Main Results +### Results on R50/101-FPN + +| Backbone | Style | align | ms-train| Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | Download | +|:---------:|:-------:|:-------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:--------:| +| R-50 | pytorch | N | N | 1x | 5.7 | - | | 36.5 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/foveabox/fovea_r50_fpn_4gpu_1x_20190905-3b185a5d.pth) | +| R-50 | pytorch | N | N | 2x | - | - | | 36.9 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/foveabox/fovea_r50_fpn_4gpu_2x_20190905-4a07f6e0.pth) | +| R-50 | pytorch | Y | N | 2x | - | - | | 37.9 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/foveabox/fovea_align_gn_r50_fpn_4gpu_2x_20190905-3e6bc82f.pth) | +| R-50 | pytorch | Y | Y | 2x | - | - | | 40.1 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/foveabox/fovea_align_gn_ms_r50_fpn_4gpu_2x_20190905-13374f33.pth) | +| R-101 | pytorch | N | N | 1x | 9.4 | - | | 38.5 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/foveabox/fovea_r101_fpn_4gpu_1x_20190905-80ff93a6.pth) | +| R-101 | pytorch | N | N | 2x | - | - | | 38.5 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/foveabox/fovea_r101_fpn_4gpu_2x_20190905-d9c99fb1.pth) | +| R-101 | pytorch | Y | N | 2x | - | - | | 39.4 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/foveabox/fovea_align_gn_r101_fpn_4gpu_2x_20190905-407ddad6.pth) | +| R-101 | pytorch | Y | Y | 2x | - | - | | 41.9 | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/foveabox/fovea_align_gn_ms_r101_fpn_4gpu_2x_20190905-936c7277.pth) | + +[1] *1x and 2x mean the model is trained for 12 and 24 epochs, respectively.* \ +[2] *Align means utilizing deformable convolution to align the cls branch.* \ +[3] *All results are obtained with a single model and without any test time data augmentation.*\ +[4] *We use 4 NVIDIA Tesla V100 GPUs for training.* + +Any pull requests or issues are welcome. + +## Citations +Please consider citing our paper in your publications if the project helps your research. BibTeX reference is as follows. +``` +@article{kong2019foveabox, + title={FoveaBox: Beyond Anchor-based Object Detector}, + author={Kong, Tao and Sun, Fuchun and Liu, Huaping and Jiang, Yuning and Shi, Jianbo}, + journal={arXiv preprint arXiv:1904.03797}, + year={2019} +} +``` \ No newline at end of file diff --git a/configs/foveabox/fovea_align_gn_ms_r101_fpn_4gpu_2x.py b/configs/foveabox/fovea_align_gn_ms_r101_fpn_4gpu_2x.py new file mode 100644 index 0000000000000000000000000000000000000000..44f1d15e82d06b93b1af90f399b2be23cb4ab76f --- /dev/null +++ b/configs/foveabox/fovea_align_gn_ms_r101_fpn_4gpu_2x.py @@ -0,0 +1,125 @@ +# model settings +model = dict( + type='FOVEA', + pretrained='torchvision://resnet101', + backbone=dict( + type='ResNet', + depth=101, + num_stages=4, + out_indices=(0, 1, 2, 3), + frozen_stages=1, + style='pytorch'), + neck=dict( + type='FPN', + in_channels=[256, 512, 1024, 2048], + out_channels=256, + start_level=1, + num_outs=5, + add_extra_convs=True), + bbox_head=dict( + type='FoveaHead', + num_classes=81, + in_channels=256, + stacked_convs=4, + feat_channels=256, + strides=[8, 16, 32, 64, 128], + base_edge_list=[16, 32, 64, 128, 256], + scale_ranges=((1, 64), (32, 128), (64, 256), (128, 512), (256, 2048)), + sigma=0.4, + with_deform=True, + norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=1.50, + alpha=0.4, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0))) +# training and testing settings +train_cfg = dict() +test_cfg = dict( + nms_pre=1000, + score_thr=0.05, + nms=dict(type='nms', iou_thr=0.5), + max_per_img=100) +# dataset settings +# dataset settings +dataset_type = 'CocoDataset' +data_root = 'data/coco/' +img_norm_cfg = dict( + mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) +train_pipeline = [ + dict(type='LoadImageFromFile'), + dict(type='LoadAnnotations', with_bbox=True), + dict( + type='Resize', + img_scale=[(1333, 640), (1333, 800)], + multiscale_mode='value', + keep_ratio=True), + dict(type='RandomFlip', flip_ratio=0.5), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='DefaultFormatBundle'), + dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), +] +test_pipeline = [ + dict(type='LoadImageFromFile'), + dict( + type='MultiScaleFlipAug', + img_scale=(1333, 800), + flip=False, + transforms=[ + dict(type='Resize', keep_ratio=True), + dict(type='RandomFlip'), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='ImageToTensor', keys=['img']), + dict(type='Collect', keys=['img']), + ]) +] +data = dict( + imgs_per_gpu=4, + workers_per_gpu=4, + train=dict( + type=dataset_type, + ann_file=data_root + 'annotations/instances_train2017.json', + img_prefix=data_root + 'train2017/', + pipeline=train_pipeline), + val=dict( + type=dataset_type, + ann_file=data_root + 'annotations/instances_val2017.json', + img_prefix=data_root + 'val2017/', + pipeline=test_pipeline), + test=dict( + type=dataset_type, + ann_file=data_root + 'annotations/instances_val2017.json', + img_prefix=data_root + 'val2017/', + pipeline=test_pipeline)) +# optimizer +optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001) +optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) +# learning policy +lr_config = dict( + policy='step', + warmup='linear', + warmup_iters=500, + warmup_ratio=1.0 / 3, + step=[16, 22]) +checkpoint_config = dict(interval=1) +# yapf:disable +log_config = dict( + interval=50, + hooks=[ + dict(type='TextLoggerHook'), + # dict(type='TensorboardLoggerHook') + ]) +# yapf:enable +# runtime settings +total_epochs = 24 +device_ids = range(4) +dist_params = dict(backend='nccl') +log_level = 'INFO' +work_dir = './work_dirs/fovea_align_gn_ms_r101_fpn_4gpu_2x' +load_from = None +resume_from = None +workflow = [('train', 1)] diff --git a/configs/foveabox/fovea_align_gn_ms_r50_fpn_4gpu_2x.py b/configs/foveabox/fovea_align_gn_ms_r50_fpn_4gpu_2x.py new file mode 100644 index 0000000000000000000000000000000000000000..471739de61ba51483c867f19b419728343beedc9 --- /dev/null +++ b/configs/foveabox/fovea_align_gn_ms_r50_fpn_4gpu_2x.py @@ -0,0 +1,125 @@ +# model settings +model = dict( + type='FOVEA', + pretrained='torchvision://resnet50', + backbone=dict( + type='ResNet', + depth=50, + num_stages=4, + out_indices=(0, 1, 2, 3), + frozen_stages=1, + style='pytorch'), + neck=dict( + type='FPN', + in_channels=[256, 512, 1024, 2048], + out_channels=256, + start_level=1, + num_outs=5, + add_extra_convs=True), + bbox_head=dict( + type='FoveaHead', + num_classes=81, + in_channels=256, + stacked_convs=4, + feat_channels=256, + strides=[8, 16, 32, 64, 128], + base_edge_list=[16, 32, 64, 128, 256], + scale_ranges=((1, 64), (32, 128), (64, 256), (128, 512), (256, 2048)), + sigma=0.4, + with_deform=True, + norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=1.50, + alpha=0.4, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0))) +# training and testing settings +train_cfg = dict() +test_cfg = dict( + nms_pre=1000, + score_thr=0.05, + nms=dict(type='nms', iou_thr=0.5), + max_per_img=100) +# dataset settings +# dataset settings +dataset_type = 'CocoDataset' +data_root = 'data/coco/' +img_norm_cfg = dict( + mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) +train_pipeline = [ + dict(type='LoadImageFromFile'), + dict(type='LoadAnnotations', with_bbox=True), + dict( + type='Resize', + img_scale=[(1333, 640), (1333, 800)], + multiscale_mode='value', + keep_ratio=True), + dict(type='RandomFlip', flip_ratio=0.5), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='DefaultFormatBundle'), + dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), +] +test_pipeline = [ + dict(type='LoadImageFromFile'), + dict( + type='MultiScaleFlipAug', + img_scale=(1333, 800), + flip=False, + transforms=[ + dict(type='Resize', keep_ratio=True), + dict(type='RandomFlip'), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='ImageToTensor', keys=['img']), + dict(type='Collect', keys=['img']), + ]) +] +data = dict( + imgs_per_gpu=4, + workers_per_gpu=4, + train=dict( + type=dataset_type, + ann_file=data_root + 'annotations/instances_train2017.json', + img_prefix=data_root + 'train2017/', + pipeline=train_pipeline), + val=dict( + type=dataset_type, + ann_file=data_root + 'annotations/instances_val2017.json', + img_prefix=data_root + 'val2017/', + pipeline=test_pipeline), + test=dict( + type=dataset_type, + ann_file=data_root + 'annotations/instances_val2017.json', + img_prefix=data_root + 'val2017/', + pipeline=test_pipeline)) +# optimizer +optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001) +optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) +# learning policy +lr_config = dict( + policy='step', + warmup='linear', + warmup_iters=500, + warmup_ratio=1.0 / 3, + step=[16, 22]) +checkpoint_config = dict(interval=1) +# yapf:disable +log_config = dict( + interval=50, + hooks=[ + dict(type='TextLoggerHook'), + # dict(type='TensorboardLoggerHook') + ]) +# yapf:enable +# runtime settings +total_epochs = 24 +device_ids = range(4) +dist_params = dict(backend='nccl') +log_level = 'INFO' +work_dir = './work_dirs/fovea_align_gn_ms_r50_fpn_4gpu_2x' +load_from = None +resume_from = None +workflow = [('train', 1)] diff --git a/configs/foveabox/fovea_align_gn_r101_fpn_4gpu_2x.py b/configs/foveabox/fovea_align_gn_r101_fpn_4gpu_2x.py new file mode 100644 index 0000000000000000000000000000000000000000..efb4d9155ee7ad575d7fe0739ee9145ecb1302ff --- /dev/null +++ b/configs/foveabox/fovea_align_gn_r101_fpn_4gpu_2x.py @@ -0,0 +1,120 @@ +# model settings +model = dict( + type='FOVEA', + pretrained='torchvision://resnet101', + backbone=dict( + type='ResNet', + depth=101, + num_stages=4, + out_indices=(0, 1, 2, 3), + frozen_stages=1, + style='pytorch'), + neck=dict( + type='FPN', + in_channels=[256, 512, 1024, 2048], + out_channels=256, + start_level=1, + num_outs=5, + add_extra_convs=True), + bbox_head=dict( + type='FoveaHead', + num_classes=81, + in_channels=256, + stacked_convs=4, + feat_channels=256, + strides=[8, 16, 32, 64, 128], + base_edge_list=[16, 32, 64, 128, 256], + scale_ranges=((1, 64), (32, 128), (64, 256), (128, 512), (256, 2048)), + sigma=0.4, + with_deform=True, + norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=1.50, + alpha=0.4, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0))) +# training and testing settings +train_cfg = dict() +test_cfg = dict( + nms_pre=1000, + score_thr=0.05, + nms=dict(type='nms', iou_thr=0.5), + max_per_img=100) +# dataset settings +dataset_type = 'CocoDataset' +data_root = 'data/coco/' +img_norm_cfg = dict( + mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) +train_pipeline = [ + dict(type='LoadImageFromFile'), + dict(type='LoadAnnotations', with_bbox=True), + dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), + dict(type='RandomFlip', flip_ratio=0.5), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='DefaultFormatBundle'), + dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), +] +test_pipeline = [ + dict(type='LoadImageFromFile'), + dict( + type='MultiScaleFlipAug', + img_scale=(1333, 800), + flip=False, + transforms=[ + dict(type='Resize', keep_ratio=True), + dict(type='RandomFlip'), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='ImageToTensor', keys=['img']), + dict(type='Collect', keys=['img']), + ]) +] +data = dict( + imgs_per_gpu=4, + workers_per_gpu=4, + train=dict( + type=dataset_type, + ann_file=data_root + 'annotations/instances_train2017.json', + img_prefix=data_root + 'train2017/', + pipeline=train_pipeline), + val=dict( + type=dataset_type, + ann_file=data_root + 'annotations/instances_val2017.json', + img_prefix=data_root + 'val2017/', + pipeline=test_pipeline), + test=dict( + type=dataset_type, + ann_file=data_root + 'annotations/instances_val2017.json', + img_prefix=data_root + 'val2017/', + pipeline=test_pipeline)) +# optimizer +optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001) +optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) +# learning policy +lr_config = dict( + policy='step', + warmup='linear', + warmup_iters=500, + warmup_ratio=1.0 / 3, + step=[16, 22]) +checkpoint_config = dict(interval=1) +# yapf:disable +log_config = dict( + interval=50, + hooks=[ + dict(type='TextLoggerHook'), + # dict(type='TensorboardLoggerHook') + ]) +# yapf:enable +# runtime settings +total_epochs = 24 +device_ids = range(4) +dist_params = dict(backend='nccl') +log_level = 'INFO' +work_dir = './work_dirs/fovea_align_gn_r101_fpn_4gpu_2x' +load_from = None +resume_from = None +workflow = [('train', 1)] diff --git a/configs/foveabox/fovea_align_gn_r50_fpn_4gpu_2x.py b/configs/foveabox/fovea_align_gn_r50_fpn_4gpu_2x.py new file mode 100644 index 0000000000000000000000000000000000000000..62faa60e535b039fcf4ca2f518d170822ed1318c --- /dev/null +++ b/configs/foveabox/fovea_align_gn_r50_fpn_4gpu_2x.py @@ -0,0 +1,120 @@ +# model settings +model = dict( + type='FOVEA', + pretrained='torchvision://resnet50', + backbone=dict( + type='ResNet', + depth=50, + num_stages=4, + out_indices=(0, 1, 2, 3), + frozen_stages=1, + style='pytorch'), + neck=dict( + type='FPN', + in_channels=[256, 512, 1024, 2048], + out_channels=256, + start_level=1, + num_outs=5, + add_extra_convs=True), + bbox_head=dict( + type='FoveaHead', + num_classes=81, + in_channels=256, + stacked_convs=4, + feat_channels=256, + strides=[8, 16, 32, 64, 128], + base_edge_list=[16, 32, 64, 128, 256], + scale_ranges=((1, 64), (32, 128), (64, 256), (128, 512), (256, 2048)), + sigma=0.4, + with_deform=True, + norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=1.50, + alpha=0.4, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0))) +# training and testing settings +train_cfg = dict() +test_cfg = dict( + nms_pre=1000, + score_thr=0.05, + nms=dict(type='nms', iou_thr=0.5), + max_per_img=100) +# dataset settings +dataset_type = 'CocoDataset' +data_root = 'data/coco/' +img_norm_cfg = dict( + mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) +train_pipeline = [ + dict(type='LoadImageFromFile'), + dict(type='LoadAnnotations', with_bbox=True), + dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), + dict(type='RandomFlip', flip_ratio=0.5), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='DefaultFormatBundle'), + dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), +] +test_pipeline = [ + dict(type='LoadImageFromFile'), + dict( + type='MultiScaleFlipAug', + img_scale=(1333, 800), + flip=False, + transforms=[ + dict(type='Resize', keep_ratio=True), + dict(type='RandomFlip'), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='ImageToTensor', keys=['img']), + dict(type='Collect', keys=['img']), + ]) +] +data = dict( + imgs_per_gpu=4, + workers_per_gpu=4, + train=dict( + type=dataset_type, + ann_file=data_root + 'annotations/instances_train2017.json', + img_prefix=data_root + 'train2017/', + pipeline=train_pipeline), + val=dict( + type=dataset_type, + ann_file=data_root + 'annotations/instances_val2017.json', + img_prefix=data_root + 'val2017/', + pipeline=test_pipeline), + test=dict( + type=dataset_type, + ann_file=data_root + 'annotations/instances_val2017.json', + img_prefix=data_root + 'val2017/', + pipeline=test_pipeline)) +# optimizer +optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001) +optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) +# learning policy +lr_config = dict( + policy='step', + warmup='linear', + warmup_iters=500, + warmup_ratio=1.0 / 3, + step=[16, 22]) +checkpoint_config = dict(interval=1) +# yapf:disable +log_config = dict( + interval=50, + hooks=[ + dict(type='TextLoggerHook'), + # dict(type='TensorboardLoggerHook') + ]) +# yapf:enable +# runtime settings +total_epochs = 24 +device_ids = range(4) +dist_params = dict(backend='nccl') +log_level = 'INFO' +work_dir = './work_dirs/fovea_align_gn_r50_fpn_4gpu_2x' +load_from = None +resume_from = None +workflow = [('train', 1)] diff --git a/configs/foveabox/fovea_r50_fpn_4gpu_1x.py b/configs/foveabox/fovea_r50_fpn_4gpu_1x.py new file mode 100644 index 0000000000000000000000000000000000000000..c2f7f50997df58d5a927044d7a77f54d5ed3202c --- /dev/null +++ b/configs/foveabox/fovea_r50_fpn_4gpu_1x.py @@ -0,0 +1,120 @@ +# model settings +model = dict( + type='FOVEA', + pretrained='torchvision://resnet50', + backbone=dict( + type='ResNet', + depth=50, + num_stages=4, + out_indices=(0, 1, 2, 3), + frozen_stages=1, + style='pytorch'), + neck=dict( + type='FPN', + in_channels=[256, 512, 1024, 2048], + out_channels=256, + start_level=1, + num_outs=5, + add_extra_convs=True), + bbox_head=dict( + type='FoveaHead', + num_classes=81, + in_channels=256, + stacked_convs=4, + feat_channels=256, + strides=[8, 16, 32, 64, 128], + base_edge_list=[16, 32, 64, 128, 256], + scale_ranges=((1, 64), (32, 128), (64, 256), (128, 512), (256, 2048)), + sigma=0.4, + with_deform=False, + loss_cls=dict( + type='FocalLoss', + use_sigmoid=True, + gamma=1.50, + alpha=0.4, + loss_weight=1.0), + loss_bbox=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0))) +# training and testing settings +train_cfg = dict() +test_cfg = dict( + nms_pre=1000, + score_thr=0.05, + nms=dict(type='nms', iou_thr=0.5), + max_per_img=100) +# dataset settings +# dataset settings +dataset_type = 'CocoDataset' +data_root = 'data/coco/' +img_norm_cfg = dict( + mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) +train_pipeline = [ + dict(type='LoadImageFromFile'), + dict(type='LoadAnnotations', with_bbox=True), + dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), + dict(type='RandomFlip', flip_ratio=0.5), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='DefaultFormatBundle'), + dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), +] +test_pipeline = [ + dict(type='LoadImageFromFile'), + dict( + type='MultiScaleFlipAug', + img_scale=(1333, 800), + flip=False, + transforms=[ + dict(type='Resize', keep_ratio=True), + dict(type='RandomFlip'), + dict(type='Normalize', **img_norm_cfg), + dict(type='Pad', size_divisor=32), + dict(type='ImageToTensor', keys=['img']), + dict(type='Collect', keys=['img']), + ]) +] +data = dict( + imgs_per_gpu=4, + workers_per_gpu=4, + train=dict( + type=dataset_type, + ann_file=data_root + 'annotations/instances_train2017.json', + img_prefix=data_root + 'train2017/', + pipeline=train_pipeline), + val=dict( + type=dataset_type, + ann_file=data_root + 'annotations/instances_val2017.json', + img_prefix=data_root + 'val2017/', + pipeline=test_pipeline), + test=dict( + type=dataset_type, + ann_file=data_root + 'annotations/instances_val2017.json', + img_prefix=data_root + 'val2017/', + pipeline=test_pipeline)) +# optimizer +optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001) +optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) +# learning policy +lr_config = dict( + policy='step', + warmup='linear', + warmup_iters=500, + warmup_ratio=1.0 / 3, + step=[8, 11]) +checkpoint_config = dict(interval=1) +# yapf:disable +log_config = dict( + interval=50, + hooks=[ + dict(type='TextLoggerHook'), + # dict(type='TensorboardLoggerHook') + ]) +# yapf:enable +# runtime settings +total_epochs = 12 +device_ids = range(4) +dist_params = dict(backend='nccl') +log_level = 'INFO' +work_dir = './work_dirs/fovea_r50_fpn_4gpu_1x' +load_from = None +resume_from = None +workflow = [('train', 1)] diff --git a/docs/MODEL_ZOO.md b/docs/MODEL_ZOO.md index c236b4a2ad3d349d1ca5633c7327e6717c8f8c95..7a71826bcc78ea55672ad144870f74d4d2711a11 100644 --- a/docs/MODEL_ZOO.md +++ b/docs/MODEL_ZOO.md @@ -242,6 +242,10 @@ Please refer to [Guided Anchoring](../configs/guided_anchoring/README.md) for de Please refer to [FCOS](../configs/fcos/README.md) for details. +### FoveaBox + +Please refer to [FoveaBox](../configs/foveabox/README.md) for details. + ### Grid R-CNN (plus) Please refer to [Grid R-CNN](../configs/grid_rcnn/README.md) for details. diff --git a/mmdet/models/anchor_heads/__init__.py b/mmdet/models/anchor_heads/__init__.py index 5df25d04e16975e71067028f7622d8174eb7a7b7..22c859f6fca5047fef5d8b0ef4e7d8a050ba5a63 100644 --- a/mmdet/models/anchor_heads/__init__.py +++ b/mmdet/models/anchor_heads/__init__.py @@ -1,5 +1,6 @@ from .anchor_head import AnchorHead from .fcos_head import FCOSHead +from .fovea_head import FoveaHead from .ga_retina_head import GARetinaHead from .ga_rpn_head import GARPNHead from .guided_anchor_head import FeatureAdaption, GuidedAnchorHead @@ -11,5 +12,5 @@ from .ssd_head import SSDHead __all__ = [ 'AnchorHead', 'GuidedAnchorHead', 'FeatureAdaption', 'RPNHead', 'GARPNHead', 'RetinaHead', 'GARetinaHead', 'SSDHead', 'FCOSHead', - 'RepPointsHead' + 'RepPointsHead', 'FoveaHead' ] diff --git a/mmdet/models/anchor_heads/fovea_head.py b/mmdet/models/anchor_heads/fovea_head.py new file mode 100644 index 0000000000000000000000000000000000000000..a17e0b127b2125e929be0cea20689c21fb3494c0 --- /dev/null +++ b/mmdet/models/anchor_heads/fovea_head.py @@ -0,0 +1,387 @@ +import torch +import torch.nn as nn +from mmcv.cnn import normal_init + +from mmdet.core import multi_apply, multiclass_nms +from mmdet.ops import DeformConv +from ..builder import build_loss +from ..registry import HEADS +from ..utils import ConvModule, bias_init_with_prob + +INF = 1e8 + + +class FeatureAlign(nn.Module): + + def __init__(self, + in_channels, + out_channels, + kernel_size=3, + deformable_groups=4): + super(FeatureAlign, self).__init__() + offset_channels = kernel_size * kernel_size * 2 + self.conv_offset = nn.Conv2d( + 4, deformable_groups * offset_channels, 1, bias=False) + self.conv_adaption = DeformConv( + in_channels, + out_channels, + kernel_size=kernel_size, + padding=(kernel_size - 1) // 2, + deformable_groups=deformable_groups) + self.relu = nn.ReLU(inplace=True) + + def init_weights(self): + normal_init(self.conv_offset, std=0.1) + normal_init(self.conv_adaption, std=0.01) + + def forward(self, x, shape): + offset = self.conv_offset(shape) + x = self.relu(self.conv_adaption(x, offset)) + return x + + +@HEADS.register_module +class FoveaHead(nn.Module): + """FoveaBox: Beyond Anchor-based Object Detector + https://arxiv.org/abs/1904.03797 + """ + + def __init__(self, + num_classes, + in_channels, + feat_channels=256, + stacked_convs=4, + strides=(4, 8, 16, 32, 64), + base_edge_list=(16, 32, 64, 128, 256), + scale_ranges=((8, 32), (16, 64), (32, 128), (64, 256), (128, + 512)), + sigma=0.4, + with_deform=False, + deformable_groups=4, + loss_cls=None, + loss_bbox=None, + conv_cfg=None, + norm_cfg=None): + super(FoveaHead, self).__init__() + self.num_classes = num_classes + self.cls_out_channels = num_classes - 1 + self.in_channels = in_channels + self.feat_channels = feat_channels + self.stacked_convs = stacked_convs + self.strides = strides + self.base_edge_list = base_edge_list + self.scale_ranges = scale_ranges + self.sigma = sigma + self.with_deform = with_deform + self.deformable_groups = deformable_groups + self.loss_cls = build_loss(loss_cls) + self.loss_bbox = build_loss(loss_bbox) + self.conv_cfg = conv_cfg + self.norm_cfg = norm_cfg + self._init_layers() + + def _init_layers(self): + self.cls_convs = nn.ModuleList() + self.reg_convs = nn.ModuleList() + # box branch + for i in range(self.stacked_convs): + chn = self.in_channels if i == 0 else self.feat_channels + self.reg_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + bias=self.norm_cfg is None)) + self.fovea_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1) + # cls branch + if not self.with_deform: + for i in range(self.stacked_convs): + chn = self.in_channels if i == 0 else self.feat_channels + self.cls_convs.append( + ConvModule( + chn, + self.feat_channels, + 3, + stride=1, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + bias=self.norm_cfg is None)) + self.fovea_cls = nn.Conv2d( + self.feat_channels, self.cls_out_channels, 3, padding=1) + else: + self.cls_convs.append( + ConvModule( + self.feat_channels, (self.feat_channels * 4), + 3, + stride=1, + padding=1, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + bias=self.norm_cfg is None)) + self.cls_convs.append( + ConvModule((self.feat_channels * 4), (self.feat_channels * 4), + 1, + stride=1, + padding=0, + conv_cfg=self.conv_cfg, + norm_cfg=self.norm_cfg, + bias=self.norm_cfg is None)) + self.feature_adaption = FeatureAlign( + self.feat_channels, + self.feat_channels, + kernel_size=3, + deformable_groups=self.deformable_groups) + self.fovea_cls = nn.Conv2d( + int(self.feat_channels * 4), + self.cls_out_channels, + 3, + padding=1) + + def init_weights(self): + for m in self.cls_convs: + normal_init(m.conv, std=0.01) + for m in self.reg_convs: + normal_init(m.conv, std=0.01) + bias_cls = bias_init_with_prob(0.01) + normal_init(self.fovea_cls, std=0.01, bias=bias_cls) + normal_init(self.fovea_reg, std=0.01) + if self.with_deform: + self.feature_adaption.init_weights() + + def forward(self, feats): + return multi_apply(self.forward_single, feats) + + def forward_single(self, x): + cls_feat = x + reg_feat = x + for reg_layer in self.reg_convs: + reg_feat = reg_layer(reg_feat) + bbox_pred = self.fovea_reg(reg_feat) + if self.with_deform: + cls_feat = self.feature_adaption(cls_feat, bbox_pred.exp()) + for cls_layer in self.cls_convs: + cls_feat = cls_layer(cls_feat) + cls_score = self.fovea_cls(cls_feat) + return cls_score, bbox_pred + + def get_points(self, featmap_sizes, dtype, device, flatten=False): + points = [] + for featmap_size in featmap_sizes: + x_range = torch.arange( + featmap_size[1], dtype=dtype, device=device) + 0.5 + y_range = torch.arange( + featmap_size[0], dtype=dtype, device=device) + 0.5 + y, x = torch.meshgrid(y_range, x_range) + if flatten: + points.append((y.flatten(), x.flatten())) + else: + points.append((y, x)) + return points + + def loss(self, + cls_scores, + bbox_preds, + gt_bbox_list, + gt_label_list, + img_metas, + cfg, + gt_bboxes_ignore=None): + assert len(cls_scores) == len(bbox_preds) + + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + points = self.get_points(featmap_sizes, bbox_preds[0].dtype, + bbox_preds[0].device) + num_imgs = cls_scores[0].size(0) + flatten_cls_scores = [ + cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels) + for cls_score in cls_scores + ] + flatten_bbox_preds = [ + bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) + for bbox_pred in bbox_preds + ] + flatten_cls_scores = torch.cat(flatten_cls_scores) + flatten_bbox_preds = torch.cat(flatten_bbox_preds) + flatten_labels, flatten_bbox_targets = self.fovea_target( + gt_bbox_list, gt_label_list, featmap_sizes, points) + pos_inds = (flatten_labels > 0).nonzero().view(-1) + num_pos = len(pos_inds) + loss_cls = self.loss_cls( + flatten_cls_scores, flatten_labels, avg_factor=num_pos + num_imgs) + if num_pos > 0: + pos_bbox_preds = flatten_bbox_preds[pos_inds] + pos_bbox_targets = flatten_bbox_targets[pos_inds] + pos_weights = pos_bbox_targets.new_zeros( + pos_bbox_targets.size()) + 1.0 + loss_bbox = self.loss_bbox( + pos_bbox_preds, + pos_bbox_targets, + pos_weights, + avg_factor=num_pos) + else: + loss_bbox = torch.tensor([0], + dtype=flatten_bbox_preds.dtype, + device=flatten_bbox_preds.device) + return dict(loss_cls=loss_cls, loss_bbox=loss_bbox) + + def fovea_target(self, gt_bbox_list, gt_label_list, featmap_sizes, points): + label_list, bbox_target_list = multi_apply( + self.fovea_target_single, + gt_bbox_list, + gt_label_list, + featmap_size_list=featmap_sizes, + point_list=points) + flatten_labels = [ + torch.cat([ + labels_level_img.flatten() for labels_level_img in labels_level + ]) for labels_level in zip(*label_list) + ] + flatten_bbox_targets = [ + torch.cat([ + bbox_targets_level_img.reshape(-1, 4) + for bbox_targets_level_img in bbox_targets_level + ]) for bbox_targets_level in zip(*bbox_target_list) + ] + flatten_labels = torch.cat(flatten_labels) + flatten_bbox_targets = torch.cat(flatten_bbox_targets) + return flatten_labels, flatten_bbox_targets + + def fovea_target_single(self, + gt_bboxes_raw, + gt_labels_raw, + featmap_size_list=None, + point_list=None): + + gt_areas = torch.sqrt((gt_bboxes_raw[:, 2] - gt_bboxes_raw[:, 0]) * + (gt_bboxes_raw[:, 3] - gt_bboxes_raw[:, 1])) + label_list = [] + bbox_target_list = [] + # for each pyramid, find the cls and box target + for base_len, (lower_bound, upper_bound), stride, featmap_size, \ + (y, x) in zip(self.base_edge_list, self.scale_ranges, + self.strides, featmap_size_list, point_list): + labels = gt_labels_raw.new_zeros(featmap_size) + bbox_targets = gt_bboxes_raw.new(featmap_size[0], featmap_size[1], + 4) + 1 + # scale assignment + hit_indices = ((gt_areas >= lower_bound) & + (gt_areas <= upper_bound)).nonzero().flatten() + if len(hit_indices) == 0: + label_list.append(labels) + bbox_target_list.append(torch.log(bbox_targets)) + continue + _, hit_index_order = torch.sort(-gt_areas[hit_indices]) + hit_indices = hit_indices[hit_index_order] + gt_bboxes = gt_bboxes_raw[hit_indices, :] / stride + gt_labels = gt_labels_raw[hit_indices] + half_w = 0.5 * (gt_bboxes[:, 2] - gt_bboxes[:, 0]) + half_h = 0.5 * (gt_bboxes[:, 3] - gt_bboxes[:, 1]) + # valid fovea area: left, right, top, down + pos_left = torch.ceil( + gt_bboxes[:, 0] + (1 - self.sigma) * half_w - 0.5).long().\ + clamp(0, featmap_size[1] - 1) + pos_right = torch.floor( + gt_bboxes[:, 0] + (1 + self.sigma) * half_w - 0.5).long().\ + clamp(0, featmap_size[1] - 1) + pos_top = torch.ceil( + gt_bboxes[:, 1] + (1 - self.sigma) * half_h - 0.5).long().\ + clamp(0, featmap_size[0] - 1) + pos_down = torch.floor( + gt_bboxes[:, 1] + (1 + self.sigma) * half_h - 0.5).long().\ + clamp(0, featmap_size[0] - 1) + for px1, py1, px2, py2, label, (gt_x1, gt_y1, gt_x2, gt_y2) in \ + zip(pos_left, pos_top, pos_right, pos_down, gt_labels, + gt_bboxes_raw[hit_indices, :]): + labels[py1:py2 + 1, px1:px2 + 1] = label + bbox_targets[py1:py2 + 1, px1:px2 + 1, 0] = \ + (stride * x[py1:py2 + 1, px1:px2 + 1] - gt_x1) / base_len + bbox_targets[py1:py2 + 1, px1:px2 + 1, 1] = \ + (stride * y[py1:py2 + 1, px1:px2 + 1] - gt_y1) / base_len + bbox_targets[py1:py2 + 1, px1:px2 + 1, 2] = \ + (gt_x2 - stride * x[py1:py2 + 1, px1:px2 + 1]) / base_len + bbox_targets[py1:py2 + 1, px1:px2 + 1, 3] = \ + (gt_y2 - stride * y[py1:py2 + 1, px1:px2 + 1]) / base_len + bbox_targets = bbox_targets.clamp(min=1. / 16, max=16.) + label_list.append(labels) + bbox_target_list.append(torch.log(bbox_targets)) + return label_list, bbox_target_list + + def get_bboxes(self, cls_scores, bbox_preds, img_metas, cfg, rescale=None): + assert len(cls_scores) == len(bbox_preds) + num_levels = len(cls_scores) + featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] + points = self.get_points( + featmap_sizes, + bbox_preds[0].dtype, + bbox_preds[0].device, + flatten=True) + result_list = [] + for img_id in range(len(img_metas)): + cls_score_list = [ + cls_scores[i][img_id].detach() for i in range(num_levels) + ] + bbox_pred_list = [ + bbox_preds[i][img_id].detach() for i in range(num_levels) + ] + img_shape = img_metas[img_id]['img_shape'] + scale_factor = img_metas[img_id]['scale_factor'] + det_bboxes = self.get_bboxes_single(cls_score_list, bbox_pred_list, + featmap_sizes, points, + img_shape, scale_factor, cfg, + rescale) + result_list.append(det_bboxes) + return result_list + + def get_bboxes_single(self, + cls_scores, + bbox_preds, + featmap_sizes, + point_list, + img_shape, + scale_factor, + cfg, + rescale=False): + assert len(cls_scores) == len(bbox_preds) == len(point_list) + det_bboxes = [] + det_scores = [] + for cls_score, bbox_pred, featmap_size, stride, base_len, (y, x) \ + in zip(cls_scores, bbox_preds, featmap_sizes, self.strides, + self.base_edge_list, point_list): + assert cls_score.size()[-2:] == bbox_pred.size()[-2:] + scores = cls_score.permute(1, 2, 0).reshape( + -1, self.cls_out_channels).sigmoid() + bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4).exp() + nms_pre = cfg.get('nms_pre', -1) + if (nms_pre > 0) and (scores.shape[0] > nms_pre): + max_scores, _ = scores.max(dim=1) + _, topk_inds = max_scores.topk(nms_pre) + bbox_pred = bbox_pred[topk_inds, :] + scores = scores[topk_inds, :] + y = y[topk_inds] + x = x[topk_inds] + x1 = (stride * x - base_len * bbox_pred[:, 0]).\ + clamp(min=0, max=img_shape[1] - 1) + y1 = (stride * y - base_len * bbox_pred[:, 1]).\ + clamp(min=0, max=img_shape[0] - 1) + x2 = (stride * x + base_len * bbox_pred[:, 2]).\ + clamp(min=0, max=img_shape[1] - 1) + y2 = (stride * y + base_len * bbox_pred[:, 3]).\ + clamp(min=0, max=img_shape[0] - 1) + bboxes = torch.stack([x1, y1, x2, y2], -1) + det_bboxes.append(bboxes) + det_scores.append(scores) + det_bboxes = torch.cat(det_bboxes) + if rescale: + det_bboxes /= det_bboxes.new_tensor(scale_factor) + det_scores = torch.cat(det_scores) + padding = det_scores.new_zeros(det_scores.shape[0], 1) + det_scores = torch.cat([padding, det_scores], dim=1) + det_bboxes, det_labels = multiclass_nms(det_bboxes, det_scores, + cfg.score_thr, cfg.nms, + cfg.max_per_img) + return det_bboxes, det_labels diff --git a/mmdet/models/detectors/__init__.py b/mmdet/models/detectors/__init__.py index 189c823bdec5f0cbf0d3e157702c53c5ed75c934..f9f83c621def00b84052ff41266180cfa8dec788 100644 --- a/mmdet/models/detectors/__init__.py +++ b/mmdet/models/detectors/__init__.py @@ -4,6 +4,7 @@ from .double_head_rcnn import DoubleHeadRCNN from .fast_rcnn import FastRCNN from .faster_rcnn import FasterRCNN from .fcos import FCOS +from .fovea import FOVEA from .grid_rcnn import GridRCNN from .htc import HybridTaskCascade from .mask_rcnn import MaskRCNN @@ -18,5 +19,5 @@ __all__ = [ 'BaseDetector', 'SingleStageDetector', 'TwoStageDetector', 'RPN', 'FastRCNN', 'FasterRCNN', 'MaskRCNN', 'CascadeRCNN', 'HybridTaskCascade', 'DoubleHeadRCNN', 'RetinaNet', 'FCOS', 'GridRCNN', 'MaskScoringRCNN', - 'RepPointsDetector' + 'RepPointsDetector', 'FOVEA' ] diff --git a/mmdet/models/detectors/fovea.py b/mmdet/models/detectors/fovea.py new file mode 100644 index 0000000000000000000000000000000000000000..0d264bb248be9c7bcd43aff073a16398a6236d79 --- /dev/null +++ b/mmdet/models/detectors/fovea.py @@ -0,0 +1,16 @@ +from ..registry import DETECTORS +from .single_stage import SingleStageDetector + + +@DETECTORS.register_module +class FOVEA(SingleStageDetector): + + def __init__(self, + backbone, + neck, + bbox_head, + train_cfg=None, + test_cfg=None, + pretrained=None): + super(FOVEA, self).__init__(backbone, neck, bbox_head, train_cfg, + test_cfg, pretrained)