diff --git a/mmdet/models/backbones/resnet.py b/mmdet/models/backbones/resnet.py index d87b736d339f33ead2ae77b38c4b6195bf3aff33..2967dd95dd99c69799eef06f0d07eeefa53060d3 100644 --- a/mmdet/models/backbones/resnet.py +++ b/mmdet/models/backbones/resnet.py @@ -352,6 +352,20 @@ class ResNet(nn.Module): memory while slowing down the training speed. zero_init_residual (bool): whether to use zero init for last norm layer in resblocks to let them behave as identity. + + Example: + >>> from mmdet.models import ResNet + >>> import torch + >>> self = ResNet(depth=18) + >>> self.eval() + >>> inputs = torch.rand(1, 3, 32, 32) + >>> level_outputs = self.forward(inputs) + >>> for level_out in level_outputs: + ... print(tuple(level_out.shape)) + (1, 64, 8, 8) + (1, 128, 4, 4) + (1, 256, 2, 2) + (1, 512, 1, 1) """ arch_settings = { diff --git a/mmdet/models/backbones/resnext.py b/mmdet/models/backbones/resnext.py index c5feaa48c2bf6529f168277edecb01adfd142a13..be2897686bfb719bcaa6d5582db9c429264514bf 100644 --- a/mmdet/models/backbones/resnext.py +++ b/mmdet/models/backbones/resnext.py @@ -179,6 +179,20 @@ class ResNeXt(ResNet): memory while slowing down the training speed. zero_init_residual (bool): whether to use zero init for last norm layer in resblocks to let them behave as identity. + + Example: + >>> from mmdet.models import ResNeXt + >>> import torch + >>> self = ResNeXt(depth=50) + >>> self.eval() + >>> inputs = torch.rand(1, 3, 32, 32) + >>> level_outputs = self.forward(inputs) + >>> for level_out in level_outputs: + ... print(tuple(level_out.shape)) + (1, 256, 8, 8) + (1, 512, 4, 4) + (1, 1024, 2, 2) + (1, 2048, 1, 1) """ arch_settings = {