import os import sys from argparse import Namespace from pathlib import Path import numpy as np import time import torch from flatland.core.env_observation_builder import DummyObservationBuilder from flatland.envs.observations import TreeObsForRailEnv from flatland.evaluators.client import FlatlandRemoteClient from flatland.envs.predictions import ShortestPathPredictorForRailEnv from flatland.evaluators.client import TimeoutException from utils.deadlock_check import check_if_all_blocked base_dir = Path(__file__).resolve().parent.parent sys.path.append(str(base_dir)) from reinforcement_learning.dddqn_policy import DDDQNPolicy from utils.observation_utils import normalize_observation #################################################### # EVALUATION PARAMETERS # Print per-step logs VERBOSE = True # Checkpoint to use (remember to push it!) checkpoint = "checkpoints/201103150429-2500.pth" # Use last action cache USE_ACTION_CACHE = True # Observation parameters (must match training parameters!) observation_tree_depth = 2 observation_radius = 10 observation_max_path_depth = 30 #################################################### remote_client = FlatlandRemoteClient() # Observation builder predictor = ShortestPathPredictorForRailEnv(observation_max_path_depth) tree_observation = TreeObsForRailEnv(max_depth=observation_tree_depth, predictor=predictor) # Calculates state and action sizes n_nodes = sum([np.power(4, i) for i in range(observation_tree_depth + 1)]) state_size = tree_observation.observation_dim * n_nodes action_size = 5 # Creates the policy. No GPU on evaluation server. policy = DDDQNPolicy(state_size, action_size, Namespace(**{'use_gpu': False}), evaluation_mode=True) if os.path.isfile(checkpoint): policy.load(checkpoint) else: print("Checkpoint not found, using untrained policy! (path: {})".format(checkpoint)) ##################################################################### # Main evaluation loop ##################################################################### evaluation_number = 0 while True: evaluation_number += 1 # We use a dummy observation and call TreeObsForRailEnv ourselves when needed. # This way we decide if we want to calculate the observations or not instead # of having them calculated every time we perform an env step. time_start = time.time() observation, info = remote_client.env_create( obs_builder_object=DummyObservationBuilder() ) env_creation_time = time.time() - time_start if not observation: # If the remote_client returns False on a `env_create` call, # then it basically means that your agent has already been # evaluated on all the required evaluation environments, # and hence it's safe to break out of the main evaluation loop. break print("Env Path : ", remote_client.current_env_path) print("Env Creation Time : ", env_creation_time) local_env = remote_client.env nb_agents = len(local_env.agents) max_nb_steps = local_env._max_episode_steps tree_observation.set_env(local_env) tree_observation.reset() observation = tree_observation.get_many(list(range(nb_agents))) print("Evaluation {}: {} agents in {}x{}".format(evaluation_number, nb_agents, local_env.width, local_env.height)) # Now we enter into another infinite loop where we # compute the actions for all the individual steps in this episode # until the episode is `done` steps = 0 # Bookkeeping time_taken_by_controller = [] time_taken_per_step = [] # Action cache: keep track of last observation to avoid running the same inferrence multiple times. # This only makes sense for deterministic policies. agent_last_obs = {} agent_last_action = {} nb_hit = 0 while True: try: ##################################################################### # Evaluation of a single episode ##################################################################### steps += 1 obs_time, agent_time, step_time = 0.0, 0.0, 0.0 no_ops_mode = False if not check_if_all_blocked(env=local_env): time_start = time.time() action_dict = {} for agent in range(nb_agents): if observation[agent] and info['action_required'][agent]: if agent in agent_last_obs and np.all(agent_last_obs[agent] == observation[agent]): # cache hit action = agent_last_action[agent] nb_hit += 1 else: # otherwise, run normalization and inference norm_obs = normalize_observation(observation[agent], tree_depth=observation_tree_depth, observation_radius=observation_radius) action = policy.act(norm_obs, eps=0.0) action_dict[agent] = action if USE_ACTION_CACHE: agent_last_obs[agent] = observation[agent] agent_last_action[agent] = action agent_time = time.time() - time_start time_taken_by_controller.append(agent_time) time_start = time.time() _, all_rewards, done, info = remote_client.env_step(action_dict) step_time = time.time() - time_start time_taken_per_step.append(step_time) time_start = time.time() observation = tree_observation.get_many(list(range(nb_agents))) obs_time = time.time() - time_start else: # Fully deadlocked: perform no-ops no_ops_mode = True time_start = time.time() _, all_rewards, done, info = remote_client.env_step({}) step_time = time.time() - time_start time_taken_per_step.append(step_time) nb_agents_done = sum(done[idx] for idx in local_env.get_agent_handles()) if VERBOSE or done['__all__']: print("Step {}/{}\tAgents done: {}\t Obs time {:.3f}s\t Inference time {:.5f}s\t Step time {:.3f}s\t Cache hits {}\t No-ops? {}".format( str(steps).zfill(4), max_nb_steps, nb_agents_done, obs_time, agent_time, step_time, nb_hit, no_ops_mode ), end="\r") if done['__all__']: # When done['__all__'] == True, then the evaluation of this # particular Env instantiation is complete, and we can break out # of this loop, and move onto the next Env evaluation print() break except TimeoutException as err: # A timeout occurs, won't get any reward for this episode :-( # Skip to next episode as further actions in this one will be ignored. # The whole evaluation will be stopped if there are 10 consecutive timeouts. print("Timeout! Will skip this episode and go to the next.", err) break np_time_taken_by_controller = np.array(time_taken_by_controller) np_time_taken_per_step = np.array(time_taken_per_step) print("Mean/Std of Time taken by Controller : ", np_time_taken_by_controller.mean(), np_time_taken_by_controller.std()) print("Mean/Std of Time per Step : ", np_time_taken_per_step.mean(), np_time_taken_per_step.std()) print("=" * 100) print("Evaluation of all environments complete!") ######################################################################## # Submit your Results # # Please do not forget to include this call, as this triggers the # final computation of the score statistics, video generation, etc # and is necessary to have your submission marked as successfully evaluated ######################################################################## print(remote_client.submit())