from __future__ import division import argparse import logging from collections import OrderedDict import numpy as np import torch from mmcv import Config from mmcv.runner import Runner, obj_from_dict from mmdet import datasets, __version__ from mmdet.core import (init_dist, DistOptimizerHook, DistSamplerSeedHook, MMDataParallel, MMDistributedDataParallel, CocoDistEvalRecallHook, CocoDistEvalmAPHook) from mmdet.datasets.loader import build_dataloader from mmdet.models import build_detector, RPN def parse_losses(losses): log_vars = OrderedDict() for loss_name, loss_value in losses.items(): if isinstance(loss_value, torch.Tensor): log_vars[loss_name] = loss_value.mean() elif isinstance(loss_value, list): log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value) else: raise TypeError( '{} is not a tensor or list of tensors'.format(loss_name)) loss = sum(_value for _key, _value in log_vars.items() if 'loss' in _key) log_vars['loss'] = loss for name in log_vars: log_vars[name] = log_vars[name].item() return loss, log_vars def batch_processor(model, data, train_mode): losses = model(**data) loss, log_vars = parse_losses(losses) outputs = dict( loss=loss, log_vars=log_vars, num_samples=len(data['img'].data)) return outputs def get_logger(log_level): logging.basicConfig( format='%(asctime)s - %(levelname)s - %(message)s', level=log_level) logger = logging.getLogger() return logger def set_random_seed(seed): np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) def parse_args(): parser = argparse.ArgumentParser(description='Train a detector') parser.add_argument('config', help='train config file path') parser.add_argument('--work_dir', help='the dir to save logs and models') parser.add_argument( '--validate', action='store_true', help='whether to add a validate phase') parser.add_argument( '--gpus', type=int, default=1, help='number of gpus to use') parser.add_argument('--seed', type=int, help='random seed') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() return args def main(): args = parse_args() cfg = Config.fromfile(args.config) if args.work_dir is not None: cfg.work_dir = args.work_dir cfg.gpus = args.gpus # add mmdet version to checkpoint as meta data cfg.checkpoint_config.meta = dict( mmdet_version=__version__, config=cfg.text) logger = get_logger(cfg.log_level) # set random seed if specified if args.seed is not None: logger.info('Set random seed to {}'.format(args.seed)) set_random_seed(args.seed) # init distributed environment if necessary if args.launcher == 'none': dist = False logger.info('Disabled distributed training.') else: dist = True init_dist(args.launcher, **cfg.dist_params) if torch.distributed.get_rank() != 0: logger.setLevel('ERROR') logger.info('Enabled distributed training.') # prepare data loaders train_dataset = obj_from_dict(cfg.data.train, datasets) data_loaders = [ build_dataloader(train_dataset, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu, cfg.gpus, dist) ] # build model model = build_detector( cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg) if dist: model = MMDistributedDataParallel(model.cuda()) else: model = MMDataParallel(model, device_ids=range(cfg.gpus)).cuda() # build runner runner = Runner(model, batch_processor, cfg.optimizer, cfg.work_dir, cfg.log_level) # register hooks optimizer_config = DistOptimizerHook( **cfg.optimizer_config) if dist else cfg.optimizer_config runner.register_training_hooks(cfg.lr_config, optimizer_config, cfg.checkpoint_config, cfg.log_config) if dist: runner.register_hook(DistSamplerSeedHook()) # register eval hooks if args.validate: if isinstance(model.module, RPN): runner.register_hook(CocoDistEvalRecallHook(cfg.data.val)) elif cfg.data.val.type == 'CocoDataset': runner.register_hook(CocoDistEvalmAPHook(cfg.data.val)) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) runner.run(data_loaders, cfg.workflow, cfg.total_epochs) if __name__ == '__main__': main()