# coding: utf-8 import asyncio import os import shutil import urllib import mmcv import torch from mmdet.apis import (async_inference_detector, inference_detector, init_detector, show_result) from mmdet.utils.contextmanagers import concurrent from mmdet.utils.profiling import profile_time async def main(): """ Benchmark between async and synchronous inference interfaces. Sample runs for 20 demo images on K80 GPU, model - mask_rcnn_r50_fpn_1x: async sync 7981.79 ms 9660.82 ms 8074.52 ms 9660.94 ms 7976.44 ms 9406.83 ms Async variant takes about 0.83-0.85 of the time of the synchronous interface. """ project_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) config_file = os.path.join(project_dir, 'configs/mask_rcnn_r50_fpn_1x.py') checkpoint_file = os.path.join( project_dir, 'checkpoints/mask_rcnn_r50_fpn_1x_20181010-069fa190.pth') if not os.path.exists(checkpoint_file): url = ('https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection' '/models/mask_rcnn_r50_fpn_1x_20181010-069fa190.pth') print('Downloading {} ...'.format(url)) local_filename, _ = urllib.request.urlretrieve(url) os.makedirs(os.path.dirname(checkpoint_file), exist_ok=True) shutil.move(local_filename, checkpoint_file) print('Saved as {}'.format(checkpoint_file)) else: print('Using existing checkpoint {}'.format(checkpoint_file)) device = 'cuda:0' model = init_detector( config_file, checkpoint=checkpoint_file, device=device) # queue is used for concurrent inference of multiple images streamqueue = asyncio.Queue() # queue size defines concurrency level streamqueue_size = 4 for _ in range(streamqueue_size): streamqueue.put_nowait(torch.cuda.Stream(device=device)) # test a single image and show the results img = mmcv.imread(os.path.join(project_dir, 'demo/demo.jpg')) # warmup await async_inference_detector(model, img) async def detect(img): async with concurrent(streamqueue): return await async_inference_detector(model, img) num_of_images = 20 with profile_time('benchmark', 'async'): tasks = [ asyncio.create_task(detect(img)) for _ in range(num_of_images) ] async_results = await asyncio.gather(*tasks) with torch.cuda.stream(torch.cuda.default_stream()): with profile_time('benchmark', 'sync'): sync_results = [ inference_detector(model, img) for _ in range(num_of_images) ] result_dir = os.path.join(project_dir, 'demo') show_result( img, async_results[0], model.CLASSES, score_thr=0.5, show=False, out_file=os.path.join(result_dir, 'result_async.jpg')) show_result( img, sync_results[0], model.CLASSES, score_thr=0.5, show=False, out_file=os.path.join(result_dir, 'result_sync.jpg')) if __name__ == '__main__': asyncio.run(main())