diff --git a/tools/train_imagenet/train_imagenet.py b/tools/train_imagenet/train_imagenet.py deleted file mode 100644 index 202344dc54d99138c45a16538865f8c067498589..0000000000000000000000000000000000000000 --- a/tools/train_imagenet/train_imagenet.py +++ /dev/null @@ -1,403 +0,0 @@ -import argparse -import os -import random -import shutil -import time -import warnings -import sys - -import torch -import torch.nn as nn -import torch.nn.parallel -import torch.backends.cudnn as cudnn -import torch.distributed as dist -import torch.optim -import torch.multiprocessing as mp -import torch.utils.data -import torch.utils.data.distributed -import torchvision.transforms as transforms -import torchvision.datasets as datasets -import torchvision.models as models - -from mmdet.models.backbones.resnet import * - -model_names = sorted(name for name in models.__dict__ - if name.islower() and not name.startswith("__") - and callable(models.__dict__[name])) - -parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') -parser.add_argument('data', metavar='DIR', - help='path to dataset') -parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18', - choices=model_names, - help='model architecture: ' + - ' | '.join(model_names) + - ' (default: resnet18)') -parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', - help='number of data loading workers (default: 4)') -parser.add_argument('--epochs', default=90, type=int, metavar='N', - help='number of total epochs to run') -parser.add_argument('--start-epoch', default=0, type=int, metavar='N', - help='manual epoch number (useful on restarts)') -parser.add_argument('-b', '--batch-size', default=256, type=int, - metavar='N', - help='mini-batch size (default: 256), this is the total ' - 'batch size of all GPUs on the current node when ' - 'using Data Parallel or Distributed Data Parallel') -parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, - metavar='LR', help='initial learning rate', dest='lr') -parser.add_argument('--momentum', default=0.9, type=float, metavar='M', - help='momentum') -parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float, - metavar='W', help='weight decay (default: 1e-4)', - dest='weight_decay') -parser.add_argument('-p', '--print-freq', default=10, type=int, - metavar='N', help='print frequency (default: 10)') -parser.add_argument('--resume', default='', type=str, metavar='PATH', - help='path to latest checkpoint (default: none)') -parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', - help='evaluate model on validation set') -parser.add_argument('--pretrained', dest='pretrained', action='store_true', - help='use pre-trained model') -parser.add_argument('--world-size', default=-1, type=int, - help='number of nodes for distributed training') -parser.add_argument('--rank', default=-1, type=int, - help='node rank for distributed training') -parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str, - help='url used to set up distributed training') -parser.add_argument('--dist-backend', default='nccl', type=str, - help='distributed backend') -parser.add_argument('--seed', default=None, type=int, - help='seed for initializing training. ') -parser.add_argument('--gpu', default=None, type=int, - help='GPU id to use.') -parser.add_argument('--multiprocessing-distributed', action='store_true', - help='Use multi-processing distributed training to launch ' - 'N processes per node, which has N GPUs. This is the ' - 'fastest way to use PyTorch for either single node or ' - 'multi node data parallel training') -parser.add_argument('--cf_path', type=str, default='.') - -best_acc1 = 0 - - -def main(): - args = parser.parse_args() - - if args.seed is not None: - random.seed(args.seed) - torch.manual_seed(args.seed) - cudnn.deterministic = True - warnings.warn('You have chosen to seed training. ' - 'This will turn on the CUDNN deterministic setting, ' - 'which can slow down your training considerably! ' - 'You may see unexpected behavior when restarting ' - 'from checkpoints.') - - if args.gpu is not None: - warnings.warn('You have chosen a specific GPU. This will completely ' - 'disable data parallelism.') - - if args.dist_url == "env://" and args.world_size == -1: - args.world_size = int(os.environ["WORLD_SIZE"]) - - args.distributed = args.world_size > 1 or args.multiprocessing_distributed - - ngpus_per_node = torch.cuda.device_count() - if args.multiprocessing_distributed: - # Since we have ngpus_per_node processes per node, the total world_size - # needs to be adjusted accordingly - args.world_size = ngpus_per_node * args.world_size - # Use torch.multiprocessing.spawn to launch distributed processes: the - # main_worker process function - mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args)) - else: - # Simply call main_worker function - main_worker(args.gpu, ngpus_per_node, args) - - -def main_worker(gpu, ngpus_per_node, args): - global best_acc1 - args.gpu = gpu - - if args.gpu is not None: - print("Use GPU: {} for training".format(args.gpu)) - - if args.distributed: - if args.dist_url == "env://" and args.rank == -1: - args.rank = int(os.environ["RANK"]) - if args.multiprocessing_distributed: - # For multiprocessing distributed training, rank needs to be the - # global rank among all the processes - args.rank = args.rank * ngpus_per_node + gpu - dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url, - world_size=args.world_size, rank=args.rank) - # create model - #if args.pretrained: - # print("=> using pre-trained model '{}'".format(args.arch)) - # model = models.__dict__[args.arch](pretrained=True) - #else: - # print("=> creating model '{}'".format(args.arch)) - # model = models.__dict__[args.arch]() - model = ResNetClassifier(50, normalize=dict(type='GN', num_groups=32)) - model.load_caffe2_weight(args.cf_path) - - if args.distributed: - # For multiprocessing distributed, DistributedDataParallel constructor - # should always set the single device scope, otherwise, - # DistributedDataParallel will use all available devices. - if args.gpu is not None: - torch.cuda.set_device(args.gpu) - model.cuda(args.gpu) - # When using a single GPU per process and per - # DistributedDataParallel, we need to divide the batch size - # ourselves based on the total number of GPUs we have - args.batch_size = int(args.batch_size / ngpus_per_node) - model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) - else: - model.cuda() - # DistributedDataParallel will divide and allocate batch_size to all - # available GPUs if device_ids are not set - model = torch.nn.parallel.DistributedDataParallel(model) - elif args.gpu is not None: - torch.cuda.set_device(args.gpu) - model = model.cuda(args.gpu) - else: - # DataParallel will divide and allocate batch_size to all available GPUs - if args.arch.startswith('alexnet') or args.arch.startswith('vgg'): - model.features = torch.nn.DataParallel(model.features) - model.cuda() - else: - model = torch.nn.DataParallel(model).cuda() - - # define loss function (criterion) and optimizer - criterion = nn.CrossEntropyLoss().cuda(args.gpu) - - optimizer = torch.optim.SGD(model.parameters(), args.lr, - momentum=args.momentum, - weight_decay=args.weight_decay) - - # optionally resume from a checkpoint - if args.resume: - if os.path.isfile(args.resume): - print("=> loading checkpoint '{}'".format(args.resume)) - checkpoint = torch.load(args.resume) - args.start_epoch = checkpoint['epoch'] - best_acc1 = checkpoint['best_acc1'] - model.load_state_dict(checkpoint['state_dict']) - optimizer.load_state_dict(checkpoint['optimizer']) - print("=> loaded checkpoint '{}' (epoch {})" - .format(args.resume, checkpoint['epoch'])) - else: - print("=> no checkpoint found at '{}'".format(args.resume)) - - cudnn.benchmark = True - - # Data loading code - traindir = os.path.join(args.data, 'train') - valdir = os.path.join(args.data, 'val') - normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], - std=[1/255, 1/255, 1/255]) - train_dataset = datasets.ImageFolder( - traindir, - transforms.Compose([ - transforms.RandomResizedCrop(224), - transforms.RandomHorizontalFlip(), - transforms.ToTensor(), - normalize, - ])) - - if args.distributed: - train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) - else: - train_sampler = None - - train_loader = torch.utils.data.DataLoader( - train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None), - num_workers=args.workers, pin_memory=True, sampler=train_sampler) - - val_loader = torch.utils.data.DataLoader( - datasets.ImageFolder(valdir, transforms.Compose([ - transforms.Resize(256), - transforms.CenterCrop(224), - transforms.ToTensor(), - normalize, - ])), - batch_size=args.batch_size, shuffle=False, - num_workers=args.workers, pin_memory=True) - - if args.evaluate: - validate(val_loader, model, criterion, args) - return - - for epoch in range(args.start_epoch, args.epochs): - if args.distributed: - train_sampler.set_epoch(epoch) - adjust_learning_rate(optimizer, epoch, args) - - # train for one epoch - train(train_loader, model, criterion, optimizer, epoch, args) - - # evaluate on validation set - acc1 = validate(val_loader, model, criterion, args) - - # remember best acc@1 and save checkpoint - is_best = acc1 > best_acc1 - best_acc1 = max(acc1, best_acc1) - - if not args.multiprocessing_distributed or (args.multiprocessing_distributed - and args.rank % ngpus_per_node == 0): - save_checkpoint({ - 'epoch': epoch + 1, - 'arch': args.arch, - 'state_dict': model.state_dict(), - 'best_acc1': best_acc1, - 'optimizer' : optimizer.state_dict(), - }, is_best) - - -def train(train_loader, model, criterion, optimizer, epoch, args): - batch_time = AverageMeter() - data_time = AverageMeter() - losses = AverageMeter() - top1 = AverageMeter() - top5 = AverageMeter() - - # switch to train mode - model.train() - - end = time.time() - for i, (input, target) in enumerate(train_loader): - # measure data loading time - data_time.update(time.time() - end) - - if args.gpu is not None: - input = input.cuda(args.gpu, non_blocking=True) - target = target.cuda(args.gpu, non_blocking=True) - - # compute output - output = model(input) - loss = criterion(output, target) - - # measure accuracy and record loss - acc1, acc5 = accuracy(output, target, topk=(1, 5)) - losses.update(loss.item(), input.size(0)) - top1.update(acc1[0], input.size(0)) - top5.update(acc5[0], input.size(0)) - - # compute gradient and do SGD step - optimizer.zero_grad() - loss.backward() - optimizer.step() - - # measure elapsed time - batch_time.update(time.time() - end) - end = time.time() - - if i % args.print_freq == 0: - print('Epoch: [{0}][{1}/{2}]\t' - 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' - 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' - 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' - 'Acc@1 {top1.val:.3f} ({top1.avg:.3f})\t' - 'Acc@5 {top5.val:.3f} ({top5.avg:.3f})'.format( - epoch, i, len(train_loader), batch_time=batch_time, - data_time=data_time, loss=losses, top1=top1, top5=top5)) - - -def validate(val_loader, model, criterion, args): - batch_time = AverageMeter() - losses = AverageMeter() - top1 = AverageMeter() - top5 = AverageMeter() - - # switch to evaluate mode - model.eval() - - with torch.no_grad(): - end = time.time() - for i, (input, target) in enumerate(val_loader): - if args.gpu is not None: - input = input.cuda(args.gpu, non_blocking=True) - target = target.cuda(args.gpu, non_blocking=True) - input = torch.cat([input[:, 2:3, :, :], input[:, 1:2, :, :], input[:, 0:1, :, :]], dim=1) - - # compute output - output = model(input) - loss = criterion(output, target) - - # measure accuracy and record loss - acc1, acc5 = accuracy(output, target, topk=(1, 5)) - losses.update(loss.item(), input.size(0)) - top1.update(acc1[0], input.size(0)) - top5.update(acc5[0], input.size(0)) - - # measure elapsed time - batch_time.update(time.time() - end) - end = time.time() - - if i % args.print_freq == 0: - print('Test: [{0}/{1}]\t' - 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' - 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' - 'Acc@1 {top1.val:.3f} ({top1.avg:.3f})\t' - 'Acc@5 {top5.val:.3f} ({top5.avg:.3f})'.format( - i, len(val_loader), batch_time=batch_time, loss=losses, - top1=top1, top5=top5)) - - print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}' - .format(top1=top1, top5=top5)) - - return top1.avg - - -def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'): - torch.save(state, filename) - if is_best: - shutil.copyfile(filename, 'model_best.pth.tar') - - -class AverageMeter(object): - """Computes and stores the average and current value""" - def __init__(self): - self.reset() - - def reset(self): - self.val = 0 - self.avg = 0 - self.sum = 0 - self.count = 0 - - def update(self, val, n=1): - self.val = val - self.sum += val * n - self.count += n - self.avg = self.sum / self.count - - -def adjust_learning_rate(optimizer, epoch, args): - """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" - lr = args.lr * (0.1 ** (epoch // 30)) - for param_group in optimizer.param_groups: - param_group['lr'] = lr - - -def accuracy(output, target, topk=(1,)): - """Computes the accuracy over the k top predictions for the specified values of k""" - with torch.no_grad(): - maxk = max(topk) - batch_size = target.size(0) - - _, pred = output.topk(maxk, 1, True, True) - pred = pred.t() - correct = pred.eq(target.view(1, -1).expand_as(pred)) - - res = [] - for k in topk: - correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) - res.append(correct_k.mul_(100.0 / batch_size)) - return res - - -if __name__ == '__main__': - main()