diff --git a/tools/coco_error_analysis.py b/tools/coco_error_analysis.py new file mode 100644 index 0000000000000000000000000000000000000000..6aeadadb9cf55ab9e2a8d1a050343c8657bf561e --- /dev/null +++ b/tools/coco_error_analysis.py @@ -0,0 +1,174 @@ +import copy +import os +from argparse import ArgumentParser +from multiprocessing import Pool + +import matplotlib.pyplot as plt +import numpy as np +from pycocotools.coco import COCO +from pycocotools.cocoeval import COCOeval + + +def makeplot(rs, ps, outDir, class_name, iou_type): + cs = np.vstack([ + np.ones((2, 3)), + np.array([.31, .51, .74]), + np.array([.75, .31, .30]), + np.array([.36, .90, .38]), + np.array([.50, .39, .64]), + np.array([1, .6, 0]) + ]) + areaNames = ['allarea', 'small', 'medium', 'large'] + types = ['C75', 'C50', 'Loc', 'Sim', 'Oth', 'BG', 'FN'] + for i in range(len(areaNames)): + area_ps = ps[..., i, 0] + figure_tile = iou_type + '-' + class_name + '-' + areaNames[i] + aps = [ps_.mean() for ps_ in area_ps] + ps_curve = [ + ps_.mean(axis=1) if ps_.ndim > 1 else ps_ for ps_ in area_ps + ] + ps_curve.insert(0, np.zeros(ps_curve[0].shape)) + fig = plt.figure() + ax = plt.subplot(111) + for k in range(len(types)): + ax.plot(rs, ps_curve[k + 1], color=[0, 0, 0], linewidth=0.5) + ax.fill_between( + rs, + ps_curve[k], + ps_curve[k + 1], + color=cs[k], + label=str('[{:.3f}'.format(aps[k]) + ']' + types[k])) + plt.xlabel('recall') + plt.ylabel('precision') + plt.xlim(0, 1.) + plt.ylim(0, 1.) + plt.title(figure_tile) + plt.legend() + # plt.show() + fig.savefig(outDir + '/{}.png'.format(figure_tile)) + plt.close(fig) + + +def analyze_individual_category(k, cocoDt, cocoGt, catId, iou_type): + nm = cocoGt.loadCats(catId)[0] + print('--------------analyzing {}-{}---------------'.format( + k + 1, nm['name'])) + ps_ = {} + dt = copy.deepcopy(cocoDt) + nm = cocoGt.loadCats(catId)[0] + imgIds = cocoGt.getImgIds() + dt_anns = dt.dataset['annotations'] + select_dt_anns = [] + for ann in dt_anns: + if ann['category_id'] == catId: + select_dt_anns.append(ann) + dt.dataset['annotations'] = select_dt_anns + dt.createIndex() + # compute precision but ignore superclass confusion + gt = copy.deepcopy(cocoGt) + child_catIds = gt.getCatIds(supNms=[nm['supercategory']]) + for idx, ann in enumerate(gt.dataset['annotations']): + if (ann['category_id'] in child_catIds + and ann['category_id'] != catId): + gt.dataset['annotations'][idx]['ignore'] = 1 + gt.dataset['annotations'][idx]['iscrowd'] = 1 + gt.dataset['annotations'][idx]['category_id'] = catId + cocoEval = COCOeval(gt, copy.deepcopy(dt), iou_type) + cocoEval.params.imgIds = imgIds + cocoEval.params.maxDets = [100] + cocoEval.params.iouThrs = [.1] + cocoEval.params.useCats = 1 + cocoEval.evaluate() + cocoEval.accumulate() + ps_supercategory = cocoEval.eval['precision'][0, :, k, :, :] + ps_['ps_supercategory'] = ps_supercategory + # compute precision but ignore any class confusion + gt = copy.deepcopy(cocoGt) + for idx, ann in enumerate(gt.dataset['annotations']): + if ann['category_id'] != catId: + gt.dataset['annotations'][idx]['ignore'] = 1 + gt.dataset['annotations'][idx]['iscrowd'] = 1 + gt.dataset['annotations'][idx]['category_id'] = catId + cocoEval = COCOeval(gt, copy.deepcopy(dt), iou_type) + cocoEval.params.imgIds = imgIds + cocoEval.params.maxDets = [100] + cocoEval.params.iouThrs = [.1] + cocoEval.params.useCats = 1 + cocoEval.evaluate() + cocoEval.accumulate() + ps_allcategory = cocoEval.eval['precision'][0, :, k, :, :] + ps_['ps_allcategory'] = ps_allcategory + return k, ps_ + + +def analyze_results(res_file, ann_file, res_types, out_dir): + for res_type in res_types: + assert res_type in ['bbox', 'segm'] + + directory = os.path.dirname(out_dir + '/') + if not os.path.exists(directory): + print('-------------create {}-----------------'.format(out_dir)) + os.makedirs(directory) + + cocoGt = COCO(ann_file) + cocoDt = cocoGt.loadRes(res_file) + imgIds = cocoGt.getImgIds() + for res_type in res_types: + res_out_dir = out_dir + '/' + res_type + '/' + res_directory = os.path.dirname(res_out_dir) + if not os.path.exists(res_directory): + print( + '-------------create {}-----------------'.format(res_out_dir)) + os.makedirs(res_directory) + iou_type = res_type + cocoEval = COCOeval( + copy.deepcopy(cocoGt), copy.deepcopy(cocoDt), iou_type) + cocoEval.params.imgIds = imgIds + cocoEval.params.iouThrs = [.75, .5, .1] + cocoEval.params.maxDets = [100] + cocoEval.evaluate() + cocoEval.accumulate() + ps = cocoEval.eval['precision'] + ps = np.vstack([ps, np.zeros((4, *ps.shape[1:]))]) + catIds = cocoGt.getCatIds() + recThrs = cocoEval.params.recThrs + with Pool(processes=48) as pool: + args = [(k, cocoDt, cocoGt, catId, iou_type) + for k, catId in enumerate(catIds)] + analyze_results = pool.starmap(analyze_individual_category, args) + for k, catId in enumerate(catIds): + nm = cocoGt.loadCats(catId)[0] + print('--------------saving {}-{}---------------'.format( + k + 1, nm['name'])) + analyze_result = analyze_results[k] + assert k == analyze_result[0] + ps_supercategory = analyze_result[1]['ps_supercategory'] + ps_allcategory = analyze_result[1]['ps_allcategory'] + # compute precision but ignore superclass confusion + ps[3, :, k, :, :] = ps_supercategory + # compute precision but ignore any class confusion + ps[4, :, k, :, :] = ps_allcategory + # fill in background and false negative errors and plot + ps[ps == -1] = 0 + ps[5, :, k, :, :] = (ps[4, :, k, :, :] > 0) + ps[6, :, k, :, :] = 1.0 + makeplot(recThrs, ps[:, :, k], res_out_dir, nm['name'], iou_type) + makeplot(recThrs, ps, res_out_dir, 'allclass', iou_type) + + +def main(): + parser = ArgumentParser(description='COCO Error Analysis Tool') + parser.add_argument('result', help='result file (json format) path') + parser.add_argument('out_dir', help='dir to save analyze result images') + parser.add_argument( + '--ann', + default='data/coco/annotations/instances_val2017.json', + help='annotation file path') + parser.add_argument( + '--types', type=str, nargs='+', default=['bbox'], help='result types') + args = parser.parse_args() + analyze_results(args.result, args.ann, args.types, out_dir=args.out_dir) + + +if __name__ == '__main__': + main()