From a2451b09f2eb609f6d9b19cc6b13f30be52badf2 Mon Sep 17 00:00:00 2001
From: pangjm <pjmzju@gmail.com>
Date: Thu, 11 Oct 2018 16:02:34 +0800
Subject: [PATCH] update fast rcnn configs

---
 configs/fast_mask_rcnn_r50_fpn_1x.py | 132 +++++++++++++++++++++++++++
 configs/fast_rcnn_r50_fpn_1x.py      | 118 ++++++++++++++++++++++++
 configs/faster_rcnn_r50_fpn_1x.py    |   3 +-
 configs/mask_rcnn_r50_fpn_1x.py      |   3 +-
 4 files changed, 252 insertions(+), 4 deletions(-)
 create mode 100644 configs/fast_mask_rcnn_r50_fpn_1x.py
 create mode 100644 configs/fast_rcnn_r50_fpn_1x.py

diff --git a/configs/fast_mask_rcnn_r50_fpn_1x.py b/configs/fast_mask_rcnn_r50_fpn_1x.py
new file mode 100644
index 0000000..1878a27
--- /dev/null
+++ b/configs/fast_mask_rcnn_r50_fpn_1x.py
@@ -0,0 +1,132 @@
+# model settings
+model = dict(
+    type='FastRCNN',
+    pretrained='modelzoo://resnet50',
+    backbone=dict(
+        type='ResNet',
+        depth=50,
+        num_stages=4,
+        out_indices=(0, 1, 2, 3),
+        frozen_stages=1,
+        style='pytorch'),
+    neck=dict(
+        type='FPN',
+        in_channels=[256, 512, 1024, 2048],
+        out_channels=256,
+        num_outs=5),
+    bbox_roi_extractor=dict(
+        type='SingleRoIExtractor',
+        roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
+        out_channels=256,
+        featmap_strides=[4, 8, 16, 32]),
+    bbox_head=dict(
+        type='SharedFCRoIHead',
+        num_fcs=2,
+        in_channels=256,
+        fc_out_channels=1024,
+        roi_feat_size=7,
+        num_classes=81,
+        target_means=[0., 0., 0., 0.],
+        target_stds=[0.1, 0.1, 0.2, 0.2],
+        reg_class_agnostic=False),
+    mask_roi_extractor=dict(
+        type='SingleRoIExtractor',
+        roi_layer=dict(type='RoIAlign', out_size=14, sample_num=2),
+        out_channels=256,
+        featmap_strides=[4, 8, 16, 32]),
+    mask_head=dict(
+        type='FCNMaskHead',
+        num_convs=4,
+        in_channels=256,
+        conv_out_channels=256,
+        num_classes=81))
+# model training and testing settings
+train_cfg = dict(
+    rcnn=dict(
+        mask_size=28,
+        pos_iou_thr=0.5,
+        neg_iou_thr=0.5,
+        crowd_thr=1.1,
+        roi_batch_size=512,
+        add_gt_as_proposals=True,
+        pos_fraction=0.25,
+        pos_balance_sampling=False,
+        neg_pos_ub=512,
+        neg_balance_thr=0,
+        min_pos_iou=0.5,
+        pos_weight=-1,
+        debug=False))
+test_cfg = dict(
+    rcnn=dict(
+        score_thr=0.05, max_per_img=100, nms_thr=0.5, mask_thr_binary=0.5))
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+data = dict(
+    imgs_per_gpu=2,
+    workers_per_gpu=2,
+    train=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_train2017.json',
+        img_prefix=data_root + 'train2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        proposal_file=data_root + 'proposals/train2017_r50_fpn_rpn_1x.pkl',
+        flip_ratio=0.5,
+        with_mask=True,
+        with_crowd=True,
+        with_label=True),
+    val=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        proposal_file=data_root + 'proposals/val2017_r50_fpn_rpn_1x.pkl',
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=True,
+        with_crowd=True,
+        with_label=True),
+    test=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        proposal_file=data_root + 'proposals/val2017_r50_fpn_rpn_1x.pkl',
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=False,
+        with_label=False,
+        test_mode=True))
+# optimizer
+optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+    policy='step',
+    warmup='linear',
+    warmup_iters=500,
+    warmup_ratio=1.0 / 3,
+    step=[8, 11])
+checkpoint_config = dict(interval=1)
+# yapf:disable
+log_config = dict(
+    interval=20,
+    hooks=[
+        dict(type='TextLoggerHook'),
+        # dict(type='TensorboardLoggerHook')
+    ])
+# yapf:enable
+# runtime settings
+total_epochs = 12
+dist_params = dict(backend='nccl')
+log_level = 'INFO'
+work_dir = './work_dirs/fast_mask_rcnn_r50_fpn_1x'
+load_from = None
+resume_from = None
+workflow = [('train', 1)]
diff --git a/configs/fast_rcnn_r50_fpn_1x.py b/configs/fast_rcnn_r50_fpn_1x.py
new file mode 100644
index 0000000..bdff052
--- /dev/null
+++ b/configs/fast_rcnn_r50_fpn_1x.py
@@ -0,0 +1,118 @@
+# model settings
+model = dict(
+    type='FastRCNN',
+    pretrained='modelzoo://resnet50',
+    backbone=dict(
+        type='ResNet',
+        depth=50,
+        num_stages=4,
+        out_indices=(0, 1, 2, 3),
+        frozen_stages=1,
+        style='pytorch'),
+    neck=dict(
+        type='FPN',
+        in_channels=[256, 512, 1024, 2048],
+        out_channels=256,
+        num_outs=5),
+    bbox_roi_extractor=dict(
+        type='SingleRoIExtractor',
+        roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
+        out_channels=256,
+        featmap_strides=[4, 8, 16, 32]),
+    bbox_head=dict(
+        type='SharedFCRoIHead',
+        num_fcs=2,
+        in_channels=256,
+        fc_out_channels=1024,
+        roi_feat_size=7,
+        num_classes=81,
+        target_means=[0., 0., 0., 0.],
+        target_stds=[0.1, 0.1, 0.2, 0.2],
+        reg_class_agnostic=False))
+# model training and testing settings
+train_cfg = dict(
+    rcnn=dict(
+        pos_iou_thr=0.5,
+        neg_iou_thr=0.5,
+        crowd_thr=1.1,
+        roi_batch_size=512,
+        add_gt_as_proposals=True,
+        pos_fraction=0.25,
+        pos_balance_sampling=False,
+        neg_pos_ub=512,
+        neg_balance_thr=0,
+        min_pos_iou=0.5,
+        pos_weight=-1,
+        debug=False))
+test_cfg = dict(rcnn=dict(score_thr=0.05, max_per_img=100, nms_thr=0.5))
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+data = dict(
+    imgs_per_gpu=2,
+    workers_per_gpu=2,
+    train=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_train2017.json',
+        img_prefix=data_root + 'train2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        proposal_file=data_root + 'proposals/train2017_r50_fpn_rpn_1x.pkl',
+        flip_ratio=0.5,
+        with_mask=False,
+        with_crowd=True,
+        with_label=True),
+    val=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        proposal_file=data_root + 'proposals/val2017_r50_fpn_rpn_1x.pkl',
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=False,
+        with_crowd=True,
+        with_label=True),
+    test=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        proposal_file=data_root + 'proposals/val2017_r50_fpn_rpn_1x.pkl',
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=False,
+        with_label=False,
+        test_mode=True))
+# optimizer
+optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+    policy='step',
+    warmup='linear',
+    warmup_iters=500,
+    warmup_ratio=1.0 / 3,
+    step=[8, 11])
+checkpoint_config = dict(interval=1)
+# yapf:disable
+log_config = dict(
+    interval=20,
+    hooks=[
+        dict(type='TextLoggerHook'),
+        # dict(type='TensorboardLoggerHook')
+    ])
+# yapf:enable
+# runtime settings
+total_epochs = 12
+dist_params = dict(backend='nccl')
+log_level = 'INFO'
+work_dir = './work_dirs/fast_rcnn_r50_fpn_1x'
+load_from = None
+resume_from = None
+workflow = [('train', 1)]
diff --git a/configs/faster_rcnn_r50_fpn_1x.py b/configs/faster_rcnn_r50_fpn_1x.py
index b15405e..1c06c4c 100644
--- a/configs/faster_rcnn_r50_fpn_1x.py
+++ b/configs/faster_rcnn_r50_fpn_1x.py
@@ -65,7 +65,7 @@ train_cfg = dict(
         pos_balance_sampling=False,
         neg_pos_ub=512,
         neg_balance_thr=0,
-        min_pos_iou=1.1,
+        min_pos_iou=0.5,
         pos_weight=-1,
         debug=False))
 test_cfg = dict(
@@ -139,7 +139,6 @@ log_config = dict(
 # yapf:enable
 # runtime settings
 total_epochs = 12
-device_ids = range(8)
 dist_params = dict(backend='nccl')
 log_level = 'INFO'
 work_dir = './work_dirs/faster_rcnn_r50_fpn_1x'
diff --git a/configs/mask_rcnn_r50_fpn_1x.py b/configs/mask_rcnn_r50_fpn_1x.py
index e2d4721..8868cf6 100644
--- a/configs/mask_rcnn_r50_fpn_1x.py
+++ b/configs/mask_rcnn_r50_fpn_1x.py
@@ -77,7 +77,7 @@ train_cfg = dict(
         pos_balance_sampling=False,
         neg_pos_ub=512,
         neg_balance_thr=0,
-        min_pos_iou=1.1,
+        min_pos_iou=0.5,
         pos_weight=-1,
         debug=False))
 test_cfg = dict(
@@ -152,7 +152,6 @@ log_config = dict(
 # yapf:enable
 # runtime settings
 total_epochs = 12
-device_ids = range(8)
 dist_params = dict(backend='nccl')
 log_level = 'INFO'
 work_dir = './work_dirs/mask_rcnn_r50_fpn_1x'
-- 
GitLab