From 8262d4614331aba38e39d1e6d3546f429764ac91 Mon Sep 17 00:00:00 2001 From: Kai Chen <chenkaidev@gmail.com> Date: Thu, 4 Oct 2018 21:05:39 +0800 Subject: [PATCH] adapt to mmcv api changes --- mmdet/core/eval/eval_hooks.py | 2 +- mmdet/core/utils/dist_utils.py | 2 +- mmdet/core/utils/hooks.py | 2 +- mmdet/core/utils/misc.py | 3 ++- mmdet/datasets/loader/build_loader.py | 2 +- mmdet/datasets/transforms.py | 2 +- mmdet/models/backbones/resnet.py | 2 +- mmdet/models/builder.py | 4 ++-- tools/test.py | 2 +- tools/train.py | 2 +- 10 files changed, 12 insertions(+), 11 deletions(-) diff --git a/mmdet/core/eval/eval_hooks.py b/mmdet/core/eval/eval_hooks.py index 3439ee0..c02aec9 100644 --- a/mmdet/core/eval/eval_hooks.py +++ b/mmdet/core/eval/eval_hooks.py @@ -6,7 +6,7 @@ import time import mmcv import numpy as np import torch -from mmcv.torchpack import Hook, obj_from_dict +from mmcv.runner import Hook, obj_from_dict from pycocotools.cocoeval import COCOeval from torch.utils.data import Dataset diff --git a/mmdet/core/utils/dist_utils.py b/mmdet/core/utils/dist_utils.py index 07b1592..fc102c6 100644 --- a/mmdet/core/utils/dist_utils.py +++ b/mmdet/core/utils/dist_utils.py @@ -6,7 +6,7 @@ import torch.multiprocessing as mp import torch.distributed as dist from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors from torch.nn.utils import clip_grad -from mmcv.torchpack import Hook, OptimizerHook +from mmcv.runner import Hook, OptimizerHook def init_dist(launcher, backend='nccl', **kwargs): diff --git a/mmdet/core/utils/hooks.py b/mmdet/core/utils/hooks.py index 72eb343..7186ad7 100644 --- a/mmdet/core/utils/hooks.py +++ b/mmdet/core/utils/hooks.py @@ -1,5 +1,5 @@ import torch -from mmcv.torchpack import Hook +from mmcv.runner import Hook class EmptyCacheHook(Hook): diff --git a/mmdet/core/utils/misc.py b/mmdet/core/utils/misc.py index fd8211e..262f168 100644 --- a/mmdet/core/utils/misc.py +++ b/mmdet/core/utils/misc.py @@ -12,7 +12,8 @@ def tensor2imgs(tensor, mean=(0, 0, 0), std=(1, 1, 1), to_rgb=True): imgs = [] for img_id in range(num_imgs): img = tensor[img_id, ...].cpu().numpy().transpose(1, 2, 0) - img = mmcv.imdenorm(img, mean, std, to_bgr=to_rgb).astype(np.uint8) + img = mmcv.imdenormalize( + img, mean, std, to_bgr=to_rgb).astype(np.uint8) imgs.append(np.ascontiguousarray(img)) return imgs diff --git a/mmdet/datasets/loader/build_loader.py b/mmdet/datasets/loader/build_loader.py index 34fe2d2..70f4399 100644 --- a/mmdet/datasets/loader/build_loader.py +++ b/mmdet/datasets/loader/build_loader.py @@ -1,6 +1,6 @@ from functools import partial -from mmcv.torchpack import get_dist_info +from mmcv.runner import get_dist_info from torch.utils.data import DataLoader from .collate import collate diff --git a/mmdet/datasets/transforms.py b/mmdet/datasets/transforms.py index 6cdba4e..19bfe05 100644 --- a/mmdet/datasets/transforms.py +++ b/mmdet/datasets/transforms.py @@ -31,7 +31,7 @@ class ImageTransform(object): def __call__(self, img, scale, flip=False): img, scale_factor = mmcv.imrescale(img, scale, return_scale=True) img_shape = img.shape - img = mmcv.imnorm(img, self.mean, self.std, self.to_rgb) + img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) if flip: img = mmcv.imflip(img) if self.size_divisor is not None: diff --git a/mmdet/models/backbones/resnet.py b/mmdet/models/backbones/resnet.py index fbb3f09..458de92 100644 --- a/mmdet/models/backbones/resnet.py +++ b/mmdet/models/backbones/resnet.py @@ -3,7 +3,7 @@ import math import torch.nn as nn import torch.utils.checkpoint as cp -from mmcv.torchpack import load_checkpoint +from mmcv.runner import load_checkpoint def conv3x3(in_planes, out_planes, stride=1, dilation=1): diff --git a/mmdet/models/builder.py b/mmdet/models/builder.py index 4bbc94a..bdf0ac3 100644 --- a/mmdet/models/builder.py +++ b/mmdet/models/builder.py @@ -1,4 +1,4 @@ -from mmcv import torchpack as tp +from mmcv.runner import obj_from_dict from torch import nn from . import (backbones, necks, roi_extractors, rpn_heads, bbox_heads, @@ -11,7 +11,7 @@ __all__ = [ def _build_module(cfg, parrent=None, default_args=None): - return cfg if isinstance(cfg, nn.Module) else tp.obj_from_dict( + return cfg if isinstance(cfg, nn.Module) else obj_from_dict( cfg, parrent, default_args) diff --git a/tools/test.py b/tools/test.py index 4c87f4e..f1fb9cd 100644 --- a/tools/test.py +++ b/tools/test.py @@ -2,7 +2,7 @@ import argparse import torch import mmcv -from mmcv.torchpack import load_checkpoint, parallel_test, obj_from_dict +from mmcv.runner import load_checkpoint, parallel_test, obj_from_dict from mmdet import datasets from mmdet.core import scatter, MMDataParallel, results2json, coco_eval diff --git a/tools/train.py b/tools/train.py index 03c87cc..41b66f3 100644 --- a/tools/train.py +++ b/tools/train.py @@ -7,7 +7,7 @@ from collections import OrderedDict import numpy as np import torch from mmcv import Config -from mmcv.torchpack import Runner, obj_from_dict +from mmcv.runner import Runner, obj_from_dict from mmdet import datasets, __version__ from mmdet.core import (init_dist, DistOptimizerHook, DistSamplerSeedHook, -- GitLab