diff --git a/configs/cascade_mask_rcnn_r101_fpn_1x.py b/configs/cascade_mask_rcnn_r101_fpn_1x.py
index 0ad9c88207b061ed6be72a35fb4687081fc72934..5ac4075e32f11cbd9b0661e27973b289c05aa4e6 100644
--- a/configs/cascade_mask_rcnn_r101_fpn_1x.py
+++ b/configs/cascade_mask_rcnn_r101_fpn_1x.py
@@ -174,8 +174,7 @@ test_cfg = dict(
         score_thr=0.05,
         nms=dict(type='nms', iou_thr=0.5),
         max_per_img=100,
-        mask_thr_binary=0.5),
-    keep_all_stages=False)
+        mask_thr_binary=0.5))
 # dataset settings
 dataset_type = 'CocoDataset'
 data_root = 'data/coco/'
diff --git a/configs/cascade_mask_rcnn_r50_caffe_c4_1x.py b/configs/cascade_mask_rcnn_r50_caffe_c4_1x.py
index dd5f356b4df35256b4ae9e0a1911907667cb4633..7ef36d5514b700d24fafc2aa7b72a89bfbf54761 100644
--- a/configs/cascade_mask_rcnn_r50_caffe_c4_1x.py
+++ b/configs/cascade_mask_rcnn_r50_caffe_c4_1x.py
@@ -176,8 +176,7 @@ test_cfg = dict(
         score_thr=0.05,
         nms=dict(type='nms', iou_thr=0.5),
         max_per_img=100,
-        mask_thr_binary=0.5),
-    keep_all_stages=False)
+        mask_thr_binary=0.5))
 # dataset settings
 dataset_type = 'CocoDataset'
 data_root = 'data/coco/'
diff --git a/configs/cascade_mask_rcnn_r50_fpn_1x.py b/configs/cascade_mask_rcnn_r50_fpn_1x.py
index c9f007ed653b76b09d9e680143a5fa9bb5261af4..e23e159d9bd9c3b553f584dddf5f246ec0892b91 100644
--- a/configs/cascade_mask_rcnn_r50_fpn_1x.py
+++ b/configs/cascade_mask_rcnn_r50_fpn_1x.py
@@ -174,8 +174,7 @@ test_cfg = dict(
         score_thr=0.05,
         nms=dict(type='nms', iou_thr=0.5),
         max_per_img=100,
-        mask_thr_binary=0.5),
-    keep_all_stages=False)
+        mask_thr_binary=0.5))
 # dataset settings
 dataset_type = 'CocoDataset'
 data_root = 'data/coco/'
diff --git a/configs/cascade_mask_rcnn_x101_32x4d_fpn_1x.py b/configs/cascade_mask_rcnn_x101_32x4d_fpn_1x.py
index 3167be4c340c5feddf09fce9984a09542ae9370d..723462c22c8463644880982be06564be185838e9 100644
--- a/configs/cascade_mask_rcnn_x101_32x4d_fpn_1x.py
+++ b/configs/cascade_mask_rcnn_x101_32x4d_fpn_1x.py
@@ -176,8 +176,7 @@ test_cfg = dict(
         score_thr=0.05,
         nms=dict(type='nms', iou_thr=0.5),
         max_per_img=100,
-        mask_thr_binary=0.5),
-    keep_all_stages=False)
+        mask_thr_binary=0.5))
 # dataset settings
 dataset_type = 'CocoDataset'
 data_root = 'data/coco/'
diff --git a/configs/cascade_mask_rcnn_x101_64x4d_fpn_1x.py b/configs/cascade_mask_rcnn_x101_64x4d_fpn_1x.py
index 0c5434ead4d6df865180cf4edb0b45c73b54cb5f..b8ad46225dc57a1555dc1ff35c5d5a1778680a38 100644
--- a/configs/cascade_mask_rcnn_x101_64x4d_fpn_1x.py
+++ b/configs/cascade_mask_rcnn_x101_64x4d_fpn_1x.py
@@ -176,8 +176,7 @@ test_cfg = dict(
         score_thr=0.05,
         nms=dict(type='nms', iou_thr=0.5),
         max_per_img=100,
-        mask_thr_binary=0.5),
-    keep_all_stages=False)
+        mask_thr_binary=0.5))
 # dataset settings
 dataset_type = 'CocoDataset'
 data_root = 'data/coco/'
diff --git a/configs/cascade_rcnn_r101_fpn_1x.py b/configs/cascade_rcnn_r101_fpn_1x.py
index a790c2bd55bf9e0b7205876d6805b909de75f6a3..9f3d08801e479187ea305456887b4ac78850287b 100644
--- a/configs/cascade_rcnn_r101_fpn_1x.py
+++ b/configs/cascade_rcnn_r101_fpn_1x.py
@@ -155,8 +155,7 @@ test_cfg = dict(
         nms_thr=0.7,
         min_bbox_size=0),
     rcnn=dict(
-        score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100),
-    keep_all_stages=False)
+        score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100))
 # dataset settings
 dataset_type = 'CocoDataset'
 data_root = 'data/coco/'
diff --git a/configs/cascade_rcnn_r50_caffe_c4_1x.py b/configs/cascade_rcnn_r50_caffe_c4_1x.py
index 0dd10abb00b993e8e51c51d92780ae914f05dd08..5722d416cb47c5f0e79c1dad0a91cc8573aeadd9 100644
--- a/configs/cascade_rcnn_r50_caffe_c4_1x.py
+++ b/configs/cascade_rcnn_r50_caffe_c4_1x.py
@@ -164,8 +164,7 @@ test_cfg = dict(
         nms_thr=0.7,
         min_bbox_size=0),
     rcnn=dict(
-        score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100),
-    keep_all_stages=False)
+        score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100))
 # dataset settings
 dataset_type = 'CocoDataset'
 data_root = 'data/coco/'
diff --git a/configs/cascade_rcnn_r50_fpn_1x.py b/configs/cascade_rcnn_r50_fpn_1x.py
index 96269fab0051dcf6ca591b305f18d1bf7ed2e090..56e3ee9c7986533073db4d934c4324466feb084f 100644
--- a/configs/cascade_rcnn_r50_fpn_1x.py
+++ b/configs/cascade_rcnn_r50_fpn_1x.py
@@ -155,8 +155,7 @@ test_cfg = dict(
         nms_thr=0.7,
         min_bbox_size=0),
     rcnn=dict(
-        score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100),
-    keep_all_stages=False)
+        score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100))
 # dataset settings
 dataset_type = 'CocoDataset'
 data_root = 'data/coco/'
diff --git a/configs/cascade_rcnn_x101_32x4d_fpn_1x.py b/configs/cascade_rcnn_x101_32x4d_fpn_1x.py
index 6de3d37d7177423e7347a7c62aa2c5d1b80e8b36..397d0b846bdf9bb60cefb07f17a52bfc2417ba23 100644
--- a/configs/cascade_rcnn_x101_32x4d_fpn_1x.py
+++ b/configs/cascade_rcnn_x101_32x4d_fpn_1x.py
@@ -157,8 +157,7 @@ test_cfg = dict(
         nms_thr=0.7,
         min_bbox_size=0),
     rcnn=dict(
-        score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100),
-    keep_all_stages=False)
+        score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100))
 # dataset settings
 dataset_type = 'CocoDataset'
 data_root = 'data/coco/'
diff --git a/configs/cascade_rcnn_x101_64x4d_fpn_1x.py b/configs/cascade_rcnn_x101_64x4d_fpn_1x.py
index d6e9d1f6f12dc0c8583d1d997703c2a94b6ae369..0d31f88332146565ac283415deecdd8c53a6761f 100644
--- a/configs/cascade_rcnn_x101_64x4d_fpn_1x.py
+++ b/configs/cascade_rcnn_x101_64x4d_fpn_1x.py
@@ -157,8 +157,7 @@ test_cfg = dict(
         nms_thr=0.7,
         min_bbox_size=0),
     rcnn=dict(
-        score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100),
-    keep_all_stages=False)
+        score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100))
 # dataset settings
 dataset_type = 'CocoDataset'
 data_root = 'data/coco/'
diff --git a/configs/dcn/cascade_mask_rcnn_dconv_c3-c5_r50_fpn_1x.py b/configs/dcn/cascade_mask_rcnn_dconv_c3-c5_r50_fpn_1x.py
index 27476d3a9a0434f5a458e8f15eb7cb833fa742cf..c27fff20cd53d578e716f26d477d62ed25362bcd 100644
--- a/configs/dcn/cascade_mask_rcnn_dconv_c3-c5_r50_fpn_1x.py
+++ b/configs/dcn/cascade_mask_rcnn_dconv_c3-c5_r50_fpn_1x.py
@@ -177,8 +177,7 @@ test_cfg = dict(
         score_thr=0.05,
         nms=dict(type='nms', iou_thr=0.5),
         max_per_img=100,
-        mask_thr_binary=0.5),
-    keep_all_stages=False)
+        mask_thr_binary=0.5))
 # dataset settings
 dataset_type = 'CocoDataset'
 data_root = 'data/coco/'
diff --git a/configs/dcn/cascade_rcnn_dconv_c3-c5_r50_fpn_1x.py b/configs/dcn/cascade_rcnn_dconv_c3-c5_r50_fpn_1x.py
index 9f9f10cf0ad7318ca7edebd9994a90ed43ff424f..2a4740b392bcd07cc8cd9c2204d0734811fc44ec 100644
--- a/configs/dcn/cascade_rcnn_dconv_c3-c5_r50_fpn_1x.py
+++ b/configs/dcn/cascade_rcnn_dconv_c3-c5_r50_fpn_1x.py
@@ -158,8 +158,7 @@ test_cfg = dict(
         nms_thr=0.7,
         min_bbox_size=0),
     rcnn=dict(
-        score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100),
-    keep_all_stages=False)
+        score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100))
 # dataset settings
 dataset_type = 'CocoDataset'
 data_root = 'data/coco/'
diff --git a/configs/hrnet/cascade_mask_rcnn_hrnetv2p_w32_20e.py b/configs/hrnet/cascade_mask_rcnn_hrnetv2p_w32_20e.py
index 17fe9455bb2c8735db2d5aa24f9aae05e4cd1b4b..ae76e5a26985c90eeac810a72d0cdcbb2a415dd5 100644
--- a/configs/hrnet/cascade_mask_rcnn_hrnetv2p_w32_20e.py
+++ b/configs/hrnet/cascade_mask_rcnn_hrnetv2p_w32_20e.py
@@ -190,8 +190,7 @@ test_cfg = dict(
         score_thr=0.05,
         nms=dict(type='nms', iou_thr=0.5),
         max_per_img=100,
-        mask_thr_binary=0.5),
-    keep_all_stages=False)
+        mask_thr_binary=0.5))
 # dataset settings
 dataset_type = 'CocoDataset'
 data_root = 'data/coco/'
diff --git a/configs/hrnet/cascade_rcnn_hrnetv2p_w32_20e.py b/configs/hrnet/cascade_rcnn_hrnetv2p_w32_20e.py
index 65eedd15a575aa803d21cd083b3fdf42dee239f0..48c013764b746dab30a61a664a2f737f9aab54f0 100644
--- a/configs/hrnet/cascade_rcnn_hrnetv2p_w32_20e.py
+++ b/configs/hrnet/cascade_rcnn_hrnetv2p_w32_20e.py
@@ -171,8 +171,7 @@ test_cfg = dict(
         nms_thr=0.7,
         min_bbox_size=0),
     rcnn=dict(
-        score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100),
-    keep_all_stages=False)
+        score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100))
 # dataset settings
 dataset_type = 'CocoDataset'
 data_root = 'data/coco/'
diff --git a/configs/hrnet/htc_hrnetv2p_w32_20e.py b/configs/hrnet/htc_hrnetv2p_w32_20e.py
index b1f9ff567f7e2ecb94b89ee930585f41ddc96f37..8279f2457bb1c5037dd8b6308653cef06e3a83fa 100644
--- a/configs/hrnet/htc_hrnetv2p_w32_20e.py
+++ b/configs/hrnet/htc_hrnetv2p_w32_20e.py
@@ -207,8 +207,7 @@ test_cfg = dict(
         score_thr=0.001,
         nms=dict(type='nms', iou_thr=0.5),
         max_per_img=100,
-        mask_thr_binary=0.5),
-    keep_all_stages=False)
+        mask_thr_binary=0.5))
 # dataset settings
 dataset_type = 'CocoDataset'
 data_root = 'data/coco/'
diff --git a/configs/htc/htc_dconv_c3-c5_mstrain_400_1400_x101_64x4d_fpn_20e.py b/configs/htc/htc_dconv_c3-c5_mstrain_400_1400_x101_64x4d_fpn_20e.py
index f06904c531d6c1972a27c5f59bd0329610603914..2072f29bbbee4790f296574a658be4be375fb0aa 100644
--- a/configs/htc/htc_dconv_c3-c5_mstrain_400_1400_x101_64x4d_fpn_20e.py
+++ b/configs/htc/htc_dconv_c3-c5_mstrain_400_1400_x101_64x4d_fpn_20e.py
@@ -199,8 +199,7 @@ test_cfg = dict(
         score_thr=0.001,
         nms=dict(type='nms', iou_thr=0.5),
         max_per_img=100,
-        mask_thr_binary=0.5),
-    keep_all_stages=False)
+        mask_thr_binary=0.5))
 # dataset settings
 dataset_type = 'CocoDataset'
 data_root = 'data/coco/'
diff --git a/configs/htc/htc_r101_fpn_20e.py b/configs/htc/htc_r101_fpn_20e.py
index 36584a3db62f1573b83ad6dd2fc16c47914ef2da..661c564cb18503116ffb7bdf8ea6940b88f18b45 100644
--- a/configs/htc/htc_r101_fpn_20e.py
+++ b/configs/htc/htc_r101_fpn_20e.py
@@ -191,8 +191,7 @@ test_cfg = dict(
         score_thr=0.001,
         nms=dict(type='nms', iou_thr=0.5),
         max_per_img=100,
-        mask_thr_binary=0.5),
-    keep_all_stages=False)
+        mask_thr_binary=0.5))
 # dataset settings
 dataset_type = 'CocoDataset'
 data_root = 'data/coco/'
diff --git a/configs/htc/htc_r50_fpn_1x.py b/configs/htc/htc_r50_fpn_1x.py
index d77d60c7c9da85248cd271379ec268ff36e08ba4..4945f2ee6cb7178920ad1f7c682a396b87c7eed9 100644
--- a/configs/htc/htc_r50_fpn_1x.py
+++ b/configs/htc/htc_r50_fpn_1x.py
@@ -191,8 +191,7 @@ test_cfg = dict(
         score_thr=0.001,
         nms=dict(type='nms', iou_thr=0.5),
         max_per_img=100,
-        mask_thr_binary=0.5),
-    keep_all_stages=False)
+        mask_thr_binary=0.5))
 # dataset settings
 dataset_type = 'CocoDataset'
 data_root = 'data/coco/'
diff --git a/configs/htc/htc_r50_fpn_20e.py b/configs/htc/htc_r50_fpn_20e.py
index 9bc49afa39ce638488ae7bbe5b99042edc3b5abf..ccf73a08836f42bd576e7008382ba8e666130183 100644
--- a/configs/htc/htc_r50_fpn_20e.py
+++ b/configs/htc/htc_r50_fpn_20e.py
@@ -191,8 +191,7 @@ test_cfg = dict(
         score_thr=0.001,
         nms=dict(type='nms', iou_thr=0.5),
         max_per_img=100,
-        mask_thr_binary=0.5),
-    keep_all_stages=False)
+        mask_thr_binary=0.5))
 # dataset settings
 dataset_type = 'CocoDataset'
 data_root = 'data/coco/'
diff --git a/configs/htc/htc_without_semantic_r50_fpn_1x.py b/configs/htc/htc_without_semantic_r50_fpn_1x.py
index 2a4b7771274c952547f8dbc42f2878a1872a6bd8..de5dfcca6179065b8108d7d044ff2522bef026af 100644
--- a/configs/htc/htc_without_semantic_r50_fpn_1x.py
+++ b/configs/htc/htc_without_semantic_r50_fpn_1x.py
@@ -176,8 +176,7 @@ test_cfg = dict(
         score_thr=0.001,
         nms=dict(type='nms', iou_thr=0.5),
         max_per_img=100,
-        mask_thr_binary=0.5),
-    keep_all_stages=False)
+        mask_thr_binary=0.5))
 # dataset settings
 dataset_type = 'CocoDataset'
 data_root = 'data/coco/'
diff --git a/configs/htc/htc_x101_32x4d_fpn_20e_16gpu.py b/configs/htc/htc_x101_32x4d_fpn_20e_16gpu.py
index 21db137c842b399ce6a5d6fbceade6d38ec1bf01..915a54e532619b5650ecdc24af9108a6eeb2600f 100644
--- a/configs/htc/htc_x101_32x4d_fpn_20e_16gpu.py
+++ b/configs/htc/htc_x101_32x4d_fpn_20e_16gpu.py
@@ -193,8 +193,7 @@ test_cfg = dict(
         score_thr=0.001,
         nms=dict(type='nms', iou_thr=0.5),
         max_per_img=100,
-        mask_thr_binary=0.5),
-    keep_all_stages=False)
+        mask_thr_binary=0.5))
 # dataset settings
 dataset_type = 'CocoDataset'
 data_root = 'data/coco/'
diff --git a/configs/htc/htc_x101_64x4d_fpn_20e_16gpu.py b/configs/htc/htc_x101_64x4d_fpn_20e_16gpu.py
index 6c5dada91b2976d66b5b0f581ef0a83cbf31739b..99ceefcab4dcafd2ea0d8b08b87152b95587d4bd 100644
--- a/configs/htc/htc_x101_64x4d_fpn_20e_16gpu.py
+++ b/configs/htc/htc_x101_64x4d_fpn_20e_16gpu.py
@@ -193,8 +193,7 @@ test_cfg = dict(
         score_thr=0.001,
         nms=dict(type='nms', iou_thr=0.5),
         max_per_img=100,
-        mask_thr_binary=0.5),
-    keep_all_stages=False)
+        mask_thr_binary=0.5))
 # dataset settings
 dataset_type = 'CocoDataset'
 data_root = 'data/coco/'
diff --git a/mmdet/models/detectors/cascade_rcnn.py b/mmdet/models/detectors/cascade_rcnn.py
index 86e971b8c57cba0dd958f9ae8a445d54498319f1..e79b189d363140b2f769e1d5d4d4ac2d0132c4b5 100644
--- a/mmdet/models/detectors/cascade_rcnn.py
+++ b/mmdet/models/detectors/cascade_rcnn.py
@@ -339,41 +339,6 @@ class CascadeRCNN(BaseDetector, RPNTestMixin):
             cls_score, bbox_pred = bbox_head(bbox_feats)
             ms_scores.append(cls_score)
 
-            if self.test_cfg.keep_all_stages:
-                det_bboxes, det_labels = bbox_head.get_det_bboxes(
-                    rois,
-                    cls_score,
-                    bbox_pred,
-                    img_shape,
-                    scale_factor,
-                    rescale=rescale,
-                    cfg=rcnn_test_cfg)
-                bbox_result = bbox2result(det_bboxes, det_labels,
-                                          bbox_head.num_classes)
-                ms_bbox_result['stage{}'.format(i)] = bbox_result
-
-                if self.with_mask:
-                    mask_roi_extractor = self.mask_roi_extractor[i]
-                    mask_head = self.mask_head[i]
-                    if det_bboxes.shape[0] == 0:
-                        mask_classes = mask_head.num_classes - 1
-                        segm_result = [[] for _ in range(mask_classes)]
-                    else:
-                        _bboxes = (
-                            det_bboxes[:, :4] *
-                            scale_factor if rescale else det_bboxes)
-                        mask_rois = bbox2roi([_bboxes])
-                        mask_feats = mask_roi_extractor(
-                            x[:len(mask_roi_extractor.featmap_strides)],
-                            mask_rois)
-                        if self.with_shared_head:
-                            mask_feats = self.shared_head(mask_feats, i)
-                        mask_pred = mask_head(mask_feats)
-                        segm_result = mask_head.get_seg_masks(
-                            mask_pred, _bboxes, det_labels, rcnn_test_cfg,
-                            ori_shape, scale_factor, rescale)
-                    ms_segm_result['stage{}'.format(i)] = segm_result
-
             if i < self.num_stages - 1:
                 bbox_label = cls_score.argmax(dim=1)
                 rois = bbox_head.regress_by_class(rois, bbox_label, bbox_pred,
@@ -425,20 +390,10 @@ class CascadeRCNN(BaseDetector, RPNTestMixin):
                     ori_shape, scale_factor, rescale)
             ms_segm_result['ensemble'] = segm_result
 
-        if not self.test_cfg.keep_all_stages:
-            if self.with_mask:
-                results = (ms_bbox_result['ensemble'],
-                           ms_segm_result['ensemble'])
-            else:
-                results = ms_bbox_result['ensemble']
+        if self.with_mask:
+            results = (ms_bbox_result['ensemble'], ms_segm_result['ensemble'])
         else:
-            if self.with_mask:
-                results = {
-                    stage: (ms_bbox_result[stage], ms_segm_result[stage])
-                    for stage in ms_bbox_result
-                }
-            else:
-                results = ms_bbox_result
+            results = ms_bbox_result['ensemble']
 
         return results
 
diff --git a/mmdet/models/detectors/htc.py b/mmdet/models/detectors/htc.py
index 097d109ac488aefa71408c63c468f4163361fc1a..a989e17f03309348ee7707e53e9fc39e4de772ca 100644
--- a/mmdet/models/detectors/htc.py
+++ b/mmdet/models/detectors/htc.py
@@ -334,35 +334,6 @@ class HybridTaskCascade(CascadeRCNN):
                 i, x, rois, semantic_feat=semantic_feat)
             ms_scores.append(cls_score)
 
-            if self.test_cfg.keep_all_stages:
-                det_bboxes, det_labels = bbox_head.get_det_bboxes(
-                    rois,
-                    cls_score,
-                    bbox_pred,
-                    img_shape,
-                    scale_factor,
-                    rescale=rescale,
-                    cfg=rcnn_test_cfg)
-                bbox_result = bbox2result(det_bboxes, det_labels,
-                                          bbox_head.num_classes)
-                ms_bbox_result['stage{}'.format(i)] = bbox_result
-
-                if self.with_mask:
-                    mask_head = self.mask_head[i]
-                    if det_bboxes.shape[0] == 0:
-                        mask_classes = mask_head.num_classes - 1
-                        segm_result = [[] for _ in range(mask_classes)]
-                    else:
-                        _bboxes = (
-                            det_bboxes[:, :4] *
-                            scale_factor if rescale else det_bboxes)
-                        mask_pred = self._mask_forward_test(
-                            i, x, _bboxes, semantic_feat=semantic_feat)
-                        segm_result = mask_head.get_seg_masks(
-                            mask_pred, _bboxes, det_labels, rcnn_test_cfg,
-                            ori_shape, scale_factor, rescale)
-                    ms_segm_result['stage{}'.format(i)] = segm_result
-
             if i < self.num_stages - 1:
                 bbox_label = cls_score.argmax(dim=1)
                 rois = bbox_head.regress_by_class(rois, bbox_label, bbox_pred,
@@ -415,20 +386,10 @@ class HybridTaskCascade(CascadeRCNN):
                     ori_shape, scale_factor, rescale)
             ms_segm_result['ensemble'] = segm_result
 
-        if not self.test_cfg.keep_all_stages:
-            if self.with_mask:
-                results = (ms_bbox_result['ensemble'],
-                           ms_segm_result['ensemble'])
-            else:
-                results = ms_bbox_result['ensemble']
+        if self.with_mask:
+            results = (ms_bbox_result['ensemble'], ms_segm_result['ensemble'])
         else:
-            if self.with_mask:
-                results = {
-                    stage: (ms_bbox_result[stage], ms_segm_result[stage])
-                    for stage in ms_bbox_result
-                }
-            else:
-                results = ms_bbox_result
+            results = ms_bbox_result['ensemble']
 
         return results