diff --git a/INSTALL.md b/INSTALL.md index 13141ce003adc0262574f9a26737dd6aaf7438ae..bbc4400e9f27ed2801a0324497be3eaedcfca52b 100644 --- a/INSTALL.md +++ b/INSTALL.md @@ -53,7 +53,16 @@ It is recommended that you run step d each time you pull some updates from githu 2. Following the above instructions, mmdetection is installed on `dev` mode, any local modifications made to the code will take effect without the need to reinstall it (unless you submit some commits and want to update the version number). -### Prepare COCO dataset +### Another option: Docker Image + +We provide a [Dockerfile](docker/Dockerfile) to build an image. + +```shell +# build an image with PyTorch 1.1, CUDA 10.0 and CUDNN 7.5 +docker build -t mmdetection docker/ +``` + +### Prepare datasets It is recommended to symlink the dataset root to `$MMDETECTION/data`. If your folder structure is different, you may need to change the corresponding paths in config files. diff --git a/docker/Dockerfile b/docker/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..75ce054d322564e341e725d445e1a3365dbfc13f --- /dev/null +++ b/docker/Dockerfile @@ -0,0 +1,13 @@ +ARG PYTORCH="1.1.0" +ARG CUDA="10.0" +ARG CUDNN="7.5" + +FROM pytorch/pytorch:${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel + +RUN apt-get update && apt-get install -y libglib2.0-0 libsm6 libxrender-dev libxext6 + +# Install mmdetection +RUN conda install cython -y +RUN git clone https://github.com/open-mmlab/mmdetection.git /mmdetection +WORKDIR /mmdetection +RUN pip install -e .