From 22298f3ca3e64a6d08ff8f3046fdd927f9bf0415 Mon Sep 17 00:00:00 2001
From: pangjm <pjmzju@gmail.com>
Date: Wed, 19 Dec 2018 13:37:42 +0800
Subject: [PATCH] add resnext configs

---
 .../cascade_mask_rcnn_x101_32x4d_fpn_1x.py    | 229 ++++++++++++++++++
 .../cascade_mask_rcnn_x101_64x4d_fpn_1x.py    | 229 ++++++++++++++++++
 configs/cascade_rcnn_x101_32x4d_fpn_1x.py     | 212 ++++++++++++++++
 configs/cascade_rcnn_x101_64x4d_fpn_1x.py     | 212 ++++++++++++++++
 configs/faster_rcnn_x101_32x4d_fpn_1x.py      | 158 ++++++++++++
 configs/faster_rcnn_x101_64x4d_fpn_1x.py      | 158 ++++++++++++
 configs/mask_rcnn_x101_32x4d_fpn_1x.py        | 170 +++++++++++++
 configs/mask_rcnn_x101_64x4d_fpn_1x.py        | 170 +++++++++++++
 configs/retinanet_x101_32x4d_fpn_1x.py        | 122 ++++++++++
 configs/retinanet_x101_64x4d_fpn_1x.py        | 122 ++++++++++
 configs/rpn_x101_32x4d_fpn_1x.py              | 123 ++++++++++
 configs/rpn_x101_64x4d_fpn_1x.py              | 123 ++++++++++
 mmdet/apis/env.py                             |  28 +--
 mmdet/models/backbones/resnet.py              |  12 +-
 mmdet/models/backbones/resnext.py             |  10 +-
 15 files changed, 2040 insertions(+), 38 deletions(-)
 create mode 100644 configs/cascade_mask_rcnn_x101_32x4d_fpn_1x.py
 create mode 100644 configs/cascade_mask_rcnn_x101_64x4d_fpn_1x.py
 create mode 100644 configs/cascade_rcnn_x101_32x4d_fpn_1x.py
 create mode 100644 configs/cascade_rcnn_x101_64x4d_fpn_1x.py
 create mode 100644 configs/faster_rcnn_x101_32x4d_fpn_1x.py
 create mode 100644 configs/faster_rcnn_x101_64x4d_fpn_1x.py
 create mode 100644 configs/mask_rcnn_x101_32x4d_fpn_1x.py
 create mode 100644 configs/mask_rcnn_x101_64x4d_fpn_1x.py
 create mode 100644 configs/retinanet_x101_32x4d_fpn_1x.py
 create mode 100644 configs/retinanet_x101_64x4d_fpn_1x.py
 create mode 100644 configs/rpn_x101_32x4d_fpn_1x.py
 create mode 100644 configs/rpn_x101_64x4d_fpn_1x.py

diff --git a/configs/cascade_mask_rcnn_x101_32x4d_fpn_1x.py b/configs/cascade_mask_rcnn_x101_32x4d_fpn_1x.py
new file mode 100644
index 0000000..90c9b07
--- /dev/null
+++ b/configs/cascade_mask_rcnn_x101_32x4d_fpn_1x.py
@@ -0,0 +1,229 @@
+# model settings
+model = dict(
+    type='CascadeRCNN',
+    num_stages=3,
+    pretrained='open-mmlab://resnext101_32x4d',
+    backbone=dict(
+        type='ResNeXt',
+        depth=101,
+        groups=32,
+        base_width=4,
+        num_stages=4,
+        out_indices=(0, 1, 2, 3),
+        frozen_stages=1,
+        style='pytorch'),
+    neck=dict(
+        type='FPN',
+        in_channels=[256, 512, 1024, 2048],
+        out_channels=256,
+        num_outs=5),
+    rpn_head=dict(
+        type='RPNHead',
+        in_channels=256,
+        feat_channels=256,
+        anchor_scales=[8],
+        anchor_ratios=[0.5, 1.0, 2.0],
+        anchor_strides=[4, 8, 16, 32, 64],
+        target_means=[.0, .0, .0, .0],
+        target_stds=[1.0, 1.0, 1.0, 1.0],
+        use_sigmoid_cls=True),
+    bbox_roi_extractor=dict(
+        type='SingleRoIExtractor',
+        roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
+        out_channels=256,
+        featmap_strides=[4, 8, 16, 32]),
+    bbox_head=[
+        dict(
+            type='SharedFCBBoxHead',
+            num_fcs=2,
+            in_channels=256,
+            fc_out_channels=1024,
+            roi_feat_size=7,
+            num_classes=81,
+            target_means=[0., 0., 0., 0.],
+            target_stds=[0.1, 0.1, 0.2, 0.2],
+            reg_class_agnostic=True),
+        dict(
+            type='SharedFCBBoxHead',
+            num_fcs=2,
+            in_channels=256,
+            fc_out_channels=1024,
+            roi_feat_size=7,
+            num_classes=81,
+            target_means=[0., 0., 0., 0.],
+            target_stds=[0.05, 0.05, 0.1, 0.1],
+            reg_class_agnostic=True),
+        dict(
+            type='SharedFCBBoxHead',
+            num_fcs=2,
+            in_channels=256,
+            fc_out_channels=1024,
+            roi_feat_size=7,
+            num_classes=81,
+            target_means=[0., 0., 0., 0.],
+            target_stds=[0.033, 0.033, 0.067, 0.067],
+            reg_class_agnostic=True)
+    ],
+    mask_roi_extractor=dict(
+        type='SingleRoIExtractor',
+        roi_layer=dict(type='RoIAlign', out_size=14, sample_num=2),
+        out_channels=256,
+        featmap_strides=[4, 8, 16, 32]),
+    mask_head=dict(
+        type='FCNMaskHead',
+        num_convs=4,
+        in_channels=256,
+        conv_out_channels=256,
+        num_classes=81))
+# model training and testing settings
+train_cfg = dict(
+    rpn=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.7,
+            neg_iou_thr=0.3,
+            min_pos_iou=0.3,
+            ignore_iof_thr=-1),
+        sampler=dict(
+            type='RandomSampler',
+            num=256,
+            pos_fraction=0.5,
+            neg_pos_ub=-1,
+            add_gt_as_proposals=False),
+        allowed_border=0,
+        pos_weight=-1,
+        smoothl1_beta=1 / 9.0,
+        debug=False),
+    rcnn=[
+        dict(
+            assigner=dict(
+                type='MaxIoUAssigner',
+                pos_iou_thr=0.5,
+                neg_iou_thr=0.5,
+                min_pos_iou=0.5,
+                ignore_iof_thr=-1),
+            sampler=dict(
+                type='RandomSampler',
+                num=512,
+                pos_fraction=0.25,
+                neg_pos_ub=-1,
+                add_gt_as_proposals=True),
+            mask_size=28,
+            pos_weight=-1,
+            debug=False),
+        dict(
+            assigner=dict(
+                type='MaxIoUAssigner',
+                pos_iou_thr=0.6,
+                neg_iou_thr=0.6,
+                min_pos_iou=0.6,
+                ignore_iof_thr=-1),
+            sampler=dict(
+                type='RandomSampler',
+                num=512,
+                pos_fraction=0.25,
+                neg_pos_ub=-1,
+                add_gt_as_proposals=True),
+            mask_size=28,
+            pos_weight=-1,
+            debug=False),
+        dict(
+            assigner=dict(
+                type='MaxIoUAssigner',
+                pos_iou_thr=0.7,
+                neg_iou_thr=0.7,
+                min_pos_iou=0.7,
+                ignore_iof_thr=-1),
+            sampler=dict(
+                type='RandomSampler',
+                num=512,
+                pos_fraction=0.25,
+                neg_pos_ub=-1,
+                add_gt_as_proposals=True),
+            mask_size=28,
+            pos_weight=-1,
+            debug=False)
+    ],
+    stage_loss_weights=[1, 0.5, 0.25])
+test_cfg = dict(
+    rpn=dict(
+        nms_across_levels=False,
+        nms_pre=2000,
+        nms_post=2000,
+        max_num=2000,
+        nms_thr=0.7,
+        min_bbox_size=0),
+    rcnn=dict(
+        score_thr=0.05,
+        nms=dict(type='nms', iou_thr=0.5),
+        max_per_img=100,
+        mask_thr_binary=0.5),
+    keep_all_stages=False)
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+data = dict(
+    imgs_per_gpu=2,
+    workers_per_gpu=2,
+    train=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_train2017.json',
+        img_prefix=data_root + 'train2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0.5,
+        with_mask=True,
+        with_crowd=True,
+        with_label=True),
+    val=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=True,
+        with_crowd=True,
+        with_label=True),
+    test=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=True,
+        with_label=False,
+        test_mode=True))
+# optimizer
+optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+    policy='step',
+    warmup='linear',
+    warmup_iters=500,
+    warmup_ratio=1.0 / 3,
+    step=[8, 11])
+checkpoint_config = dict(interval=1)
+# yapf:disable
+log_config = dict(
+    interval=50,
+    hooks=[
+        dict(type='TextLoggerHook'),
+        # dict(type='TensorboardLoggerHook')
+    ])
+# yapf:enable
+# runtime settings
+total_epochs = 12
+dist_params = dict(backend='nccl')
+log_level = 'INFO'
+work_dir = './work_dirs/cascade_mask_rcnn_r50_fpn_1x'
+load_from = None
+resume_from = None
+workflow = [('train', 1)]
diff --git a/configs/cascade_mask_rcnn_x101_64x4d_fpn_1x.py b/configs/cascade_mask_rcnn_x101_64x4d_fpn_1x.py
new file mode 100644
index 0000000..3915579
--- /dev/null
+++ b/configs/cascade_mask_rcnn_x101_64x4d_fpn_1x.py
@@ -0,0 +1,229 @@
+# model settings
+model = dict(
+    type='CascadeRCNN',
+    num_stages=3,
+    pretrained='open-mmlab://resnext101_64x4d',
+    backbone=dict(
+        type='ResNeXt',
+        depth=101,
+        groups=64,
+        base_width=4,
+        num_stages=4,
+        out_indices=(0, 1, 2, 3),
+        frozen_stages=1,
+        style='pytorch'),
+    neck=dict(
+        type='FPN',
+        in_channels=[256, 512, 1024, 2048],
+        out_channels=256,
+        num_outs=5),
+    rpn_head=dict(
+        type='RPNHead',
+        in_channels=256,
+        feat_channels=256,
+        anchor_scales=[8],
+        anchor_ratios=[0.5, 1.0, 2.0],
+        anchor_strides=[4, 8, 16, 32, 64],
+        target_means=[.0, .0, .0, .0],
+        target_stds=[1.0, 1.0, 1.0, 1.0],
+        use_sigmoid_cls=True),
+    bbox_roi_extractor=dict(
+        type='SingleRoIExtractor',
+        roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
+        out_channels=256,
+        featmap_strides=[4, 8, 16, 32]),
+    bbox_head=[
+        dict(
+            type='SharedFCBBoxHead',
+            num_fcs=2,
+            in_channels=256,
+            fc_out_channels=1024,
+            roi_feat_size=7,
+            num_classes=81,
+            target_means=[0., 0., 0., 0.],
+            target_stds=[0.1, 0.1, 0.2, 0.2],
+            reg_class_agnostic=True),
+        dict(
+            type='SharedFCBBoxHead',
+            num_fcs=2,
+            in_channels=256,
+            fc_out_channels=1024,
+            roi_feat_size=7,
+            num_classes=81,
+            target_means=[0., 0., 0., 0.],
+            target_stds=[0.05, 0.05, 0.1, 0.1],
+            reg_class_agnostic=True),
+        dict(
+            type='SharedFCBBoxHead',
+            num_fcs=2,
+            in_channels=256,
+            fc_out_channels=1024,
+            roi_feat_size=7,
+            num_classes=81,
+            target_means=[0., 0., 0., 0.],
+            target_stds=[0.033, 0.033, 0.067, 0.067],
+            reg_class_agnostic=True)
+    ],
+    mask_roi_extractor=dict(
+        type='SingleRoIExtractor',
+        roi_layer=dict(type='RoIAlign', out_size=14, sample_num=2),
+        out_channels=256,
+        featmap_strides=[4, 8, 16, 32]),
+    mask_head=dict(
+        type='FCNMaskHead',
+        num_convs=4,
+        in_channels=256,
+        conv_out_channels=256,
+        num_classes=81))
+# model training and testing settings
+train_cfg = dict(
+    rpn=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.7,
+            neg_iou_thr=0.3,
+            min_pos_iou=0.3,
+            ignore_iof_thr=-1),
+        sampler=dict(
+            type='RandomSampler',
+            num=256,
+            pos_fraction=0.5,
+            neg_pos_ub=-1,
+            add_gt_as_proposals=False),
+        allowed_border=0,
+        pos_weight=-1,
+        smoothl1_beta=1 / 9.0,
+        debug=False),
+    rcnn=[
+        dict(
+            assigner=dict(
+                type='MaxIoUAssigner',
+                pos_iou_thr=0.5,
+                neg_iou_thr=0.5,
+                min_pos_iou=0.5,
+                ignore_iof_thr=-1),
+            sampler=dict(
+                type='RandomSampler',
+                num=512,
+                pos_fraction=0.25,
+                neg_pos_ub=-1,
+                add_gt_as_proposals=True),
+            mask_size=28,
+            pos_weight=-1,
+            debug=False),
+        dict(
+            assigner=dict(
+                type='MaxIoUAssigner',
+                pos_iou_thr=0.6,
+                neg_iou_thr=0.6,
+                min_pos_iou=0.6,
+                ignore_iof_thr=-1),
+            sampler=dict(
+                type='RandomSampler',
+                num=512,
+                pos_fraction=0.25,
+                neg_pos_ub=-1,
+                add_gt_as_proposals=True),
+            mask_size=28,
+            pos_weight=-1,
+            debug=False),
+        dict(
+            assigner=dict(
+                type='MaxIoUAssigner',
+                pos_iou_thr=0.7,
+                neg_iou_thr=0.7,
+                min_pos_iou=0.7,
+                ignore_iof_thr=-1),
+            sampler=dict(
+                type='RandomSampler',
+                num=512,
+                pos_fraction=0.25,
+                neg_pos_ub=-1,
+                add_gt_as_proposals=True),
+            mask_size=28,
+            pos_weight=-1,
+            debug=False)
+    ],
+    stage_loss_weights=[1, 0.5, 0.25])
+test_cfg = dict(
+    rpn=dict(
+        nms_across_levels=False,
+        nms_pre=2000,
+        nms_post=2000,
+        max_num=2000,
+        nms_thr=0.7,
+        min_bbox_size=0),
+    rcnn=dict(
+        score_thr=0.05,
+        nms=dict(type='nms', iou_thr=0.5),
+        max_per_img=100,
+        mask_thr_binary=0.5),
+    keep_all_stages=False)
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+data = dict(
+    imgs_per_gpu=2,
+    workers_per_gpu=2,
+    train=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_train2017.json',
+        img_prefix=data_root + 'train2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0.5,
+        with_mask=True,
+        with_crowd=True,
+        with_label=True),
+    val=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=True,
+        with_crowd=True,
+        with_label=True),
+    test=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=True,
+        with_label=False,
+        test_mode=True))
+# optimizer
+optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+    policy='step',
+    warmup='linear',
+    warmup_iters=500,
+    warmup_ratio=1.0 / 3,
+    step=[8, 11])
+checkpoint_config = dict(interval=1)
+# yapf:disable
+log_config = dict(
+    interval=50,
+    hooks=[
+        dict(type='TextLoggerHook'),
+        # dict(type='TensorboardLoggerHook')
+    ])
+# yapf:enable
+# runtime settings
+total_epochs = 12
+dist_params = dict(backend='nccl')
+log_level = 'INFO'
+work_dir = './work_dirs/cascade_mask_rcnn_r50_fpn_1x'
+load_from = None
+resume_from = None
+workflow = [('train', 1)]
diff --git a/configs/cascade_rcnn_x101_32x4d_fpn_1x.py b/configs/cascade_rcnn_x101_32x4d_fpn_1x.py
new file mode 100644
index 0000000..46a5503
--- /dev/null
+++ b/configs/cascade_rcnn_x101_32x4d_fpn_1x.py
@@ -0,0 +1,212 @@
+# model settings
+model = dict(
+    type='CascadeRCNN',
+    num_stages=3,
+    pretrained='open-mmlab://resnext101_32x4d',
+    backbone=dict(
+        type='ResNeXt',
+        depth=101,
+        groups=32,
+        base_width=4,
+        num_stages=4,
+        out_indices=(0, 1, 2, 3),
+        frozen_stages=1,
+        style='pytorch'),
+    neck=dict(
+        type='FPN',
+        in_channels=[256, 512, 1024, 2048],
+        out_channels=256,
+        num_outs=5),
+    rpn_head=dict(
+        type='RPNHead',
+        in_channels=256,
+        feat_channels=256,
+        anchor_scales=[8],
+        anchor_ratios=[0.5, 1.0, 2.0],
+        anchor_strides=[4, 8, 16, 32, 64],
+        target_means=[.0, .0, .0, .0],
+        target_stds=[1.0, 1.0, 1.0, 1.0],
+        use_sigmoid_cls=True),
+    bbox_roi_extractor=dict(
+        type='SingleRoIExtractor',
+        roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
+        out_channels=256,
+        featmap_strides=[4, 8, 16, 32]),
+    bbox_head=[
+        dict(
+            type='SharedFCBBoxHead',
+            num_fcs=2,
+            in_channels=256,
+            fc_out_channels=1024,
+            roi_feat_size=7,
+            num_classes=81,
+            target_means=[0., 0., 0., 0.],
+            target_stds=[0.1, 0.1, 0.2, 0.2],
+            reg_class_agnostic=True),
+        dict(
+            type='SharedFCBBoxHead',
+            num_fcs=2,
+            in_channels=256,
+            fc_out_channels=1024,
+            roi_feat_size=7,
+            num_classes=81,
+            target_means=[0., 0., 0., 0.],
+            target_stds=[0.05, 0.05, 0.1, 0.1],
+            reg_class_agnostic=True),
+        dict(
+            type='SharedFCBBoxHead',
+            num_fcs=2,
+            in_channels=256,
+            fc_out_channels=1024,
+            roi_feat_size=7,
+            num_classes=81,
+            target_means=[0., 0., 0., 0.],
+            target_stds=[0.033, 0.033, 0.067, 0.067],
+            reg_class_agnostic=True)
+    ])
+# model training and testing settings
+train_cfg = dict(
+    rpn=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.7,
+            neg_iou_thr=0.3,
+            min_pos_iou=0.3,
+            ignore_iof_thr=-1),
+        sampler=dict(
+            type='RandomSampler',
+            num=256,
+            pos_fraction=0.5,
+            neg_pos_ub=-1,
+            add_gt_as_proposals=False),
+        allowed_border=0,
+        pos_weight=-1,
+        smoothl1_beta=1 / 9.0,
+        debug=False),
+    rcnn=[
+        dict(
+            assigner=dict(
+                type='MaxIoUAssigner',
+                pos_iou_thr=0.5,
+                neg_iou_thr=0.5,
+                min_pos_iou=0.5,
+                ignore_iof_thr=-1),
+            sampler=dict(
+                type='RandomSampler',
+                num=512,
+                pos_fraction=0.25,
+                neg_pos_ub=-1,
+                add_gt_as_proposals=True),
+            pos_weight=-1,
+            debug=False),
+        dict(
+            assigner=dict(
+                type='MaxIoUAssigner',
+                pos_iou_thr=0.6,
+                neg_iou_thr=0.6,
+                min_pos_iou=0.6,
+                ignore_iof_thr=-1),
+            sampler=dict(
+                type='RandomSampler',
+                num=512,
+                pos_fraction=0.25,
+                neg_pos_ub=-1,
+                add_gt_as_proposals=True),
+            pos_weight=-1,
+            debug=False),
+        dict(
+            assigner=dict(
+                type='MaxIoUAssigner',
+                pos_iou_thr=0.7,
+                neg_iou_thr=0.7,
+                min_pos_iou=0.7,
+                ignore_iof_thr=-1),
+            sampler=dict(
+                type='RandomSampler',
+                num=512,
+                pos_fraction=0.25,
+                neg_pos_ub=-1,
+                add_gt_as_proposals=True),
+            pos_weight=-1,
+            debug=False)
+    ],
+    stage_loss_weights=[1, 0.5, 0.25])
+test_cfg = dict(
+    rpn=dict(
+        nms_across_levels=False,
+        nms_pre=2000,
+        nms_post=2000,
+        max_num=2000,
+        nms_thr=0.7,
+        min_bbox_size=0),
+    rcnn=dict(
+        score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100),
+    keep_all_stages=False)
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+data = dict(
+    imgs_per_gpu=2,
+    workers_per_gpu=2,
+    train=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_train2017.json',
+        img_prefix=data_root + 'train2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0.5,
+        with_mask=False,
+        with_crowd=True,
+        with_label=True),
+    val=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=False,
+        with_crowd=True,
+        with_label=True),
+    test=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=False,
+        with_label=False,
+        test_mode=True))
+# optimizer
+optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+    policy='step',
+    warmup='linear',
+    warmup_iters=500,
+    warmup_ratio=1.0 / 3,
+    step=[8, 11])
+checkpoint_config = dict(interval=1)
+# yapf:disable
+log_config = dict(
+    interval=50,
+    hooks=[
+        dict(type='TextLoggerHook'),
+        # dict(type='TensorboardLoggerHook')
+    ])
+# yapf:enable
+# runtime settings
+total_epochs = 12
+dist_params = dict(backend='nccl')
+log_level = 'INFO'
+work_dir = './work_dirs/cascade_rcnn_r50_fpn_1x'
+load_from = None
+resume_from = None
+workflow = [('train', 1)]
diff --git a/configs/cascade_rcnn_x101_64x4d_fpn_1x.py b/configs/cascade_rcnn_x101_64x4d_fpn_1x.py
new file mode 100644
index 0000000..8091d26
--- /dev/null
+++ b/configs/cascade_rcnn_x101_64x4d_fpn_1x.py
@@ -0,0 +1,212 @@
+# model settings
+model = dict(
+    type='CascadeRCNN',
+    num_stages=3,
+    pretrained='open-mmlab://resnext101_64x4d',
+    backbone=dict(
+        type='ResNeXt',
+        depth=101,
+        groups=64,
+        base_width=4,
+        num_stages=4,
+        out_indices=(0, 1, 2, 3),
+        frozen_stages=1,
+        style='pytorch'),
+    neck=dict(
+        type='FPN',
+        in_channels=[256, 512, 1024, 2048],
+        out_channels=256,
+        num_outs=5),
+    rpn_head=dict(
+        type='RPNHead',
+        in_channels=256,
+        feat_channels=256,
+        anchor_scales=[8],
+        anchor_ratios=[0.5, 1.0, 2.0],
+        anchor_strides=[4, 8, 16, 32, 64],
+        target_means=[.0, .0, .0, .0],
+        target_stds=[1.0, 1.0, 1.0, 1.0],
+        use_sigmoid_cls=True),
+    bbox_roi_extractor=dict(
+        type='SingleRoIExtractor',
+        roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
+        out_channels=256,
+        featmap_strides=[4, 8, 16, 32]),
+    bbox_head=[
+        dict(
+            type='SharedFCBBoxHead',
+            num_fcs=2,
+            in_channels=256,
+            fc_out_channels=1024,
+            roi_feat_size=7,
+            num_classes=81,
+            target_means=[0., 0., 0., 0.],
+            target_stds=[0.1, 0.1, 0.2, 0.2],
+            reg_class_agnostic=True),
+        dict(
+            type='SharedFCBBoxHead',
+            num_fcs=2,
+            in_channels=256,
+            fc_out_channels=1024,
+            roi_feat_size=7,
+            num_classes=81,
+            target_means=[0., 0., 0., 0.],
+            target_stds=[0.05, 0.05, 0.1, 0.1],
+            reg_class_agnostic=True),
+        dict(
+            type='SharedFCBBoxHead',
+            num_fcs=2,
+            in_channels=256,
+            fc_out_channels=1024,
+            roi_feat_size=7,
+            num_classes=81,
+            target_means=[0., 0., 0., 0.],
+            target_stds=[0.033, 0.033, 0.067, 0.067],
+            reg_class_agnostic=True)
+    ])
+# model training and testing settings
+train_cfg = dict(
+    rpn=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.7,
+            neg_iou_thr=0.3,
+            min_pos_iou=0.3,
+            ignore_iof_thr=-1),
+        sampler=dict(
+            type='RandomSampler',
+            num=256,
+            pos_fraction=0.5,
+            neg_pos_ub=-1,
+            add_gt_as_proposals=False),
+        allowed_border=0,
+        pos_weight=-1,
+        smoothl1_beta=1 / 9.0,
+        debug=False),
+    rcnn=[
+        dict(
+            assigner=dict(
+                type='MaxIoUAssigner',
+                pos_iou_thr=0.5,
+                neg_iou_thr=0.5,
+                min_pos_iou=0.5,
+                ignore_iof_thr=-1),
+            sampler=dict(
+                type='RandomSampler',
+                num=512,
+                pos_fraction=0.25,
+                neg_pos_ub=-1,
+                add_gt_as_proposals=True),
+            pos_weight=-1,
+            debug=False),
+        dict(
+            assigner=dict(
+                type='MaxIoUAssigner',
+                pos_iou_thr=0.6,
+                neg_iou_thr=0.6,
+                min_pos_iou=0.6,
+                ignore_iof_thr=-1),
+            sampler=dict(
+                type='RandomSampler',
+                num=512,
+                pos_fraction=0.25,
+                neg_pos_ub=-1,
+                add_gt_as_proposals=True),
+            pos_weight=-1,
+            debug=False),
+        dict(
+            assigner=dict(
+                type='MaxIoUAssigner',
+                pos_iou_thr=0.7,
+                neg_iou_thr=0.7,
+                min_pos_iou=0.7,
+                ignore_iof_thr=-1),
+            sampler=dict(
+                type='RandomSampler',
+                num=512,
+                pos_fraction=0.25,
+                neg_pos_ub=-1,
+                add_gt_as_proposals=True),
+            pos_weight=-1,
+            debug=False)
+    ],
+    stage_loss_weights=[1, 0.5, 0.25])
+test_cfg = dict(
+    rpn=dict(
+        nms_across_levels=False,
+        nms_pre=2000,
+        nms_post=2000,
+        max_num=2000,
+        nms_thr=0.7,
+        min_bbox_size=0),
+    rcnn=dict(
+        score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100),
+    keep_all_stages=False)
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+data = dict(
+    imgs_per_gpu=2,
+    workers_per_gpu=2,
+    train=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_train2017.json',
+        img_prefix=data_root + 'train2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0.5,
+        with_mask=False,
+        with_crowd=True,
+        with_label=True),
+    val=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=False,
+        with_crowd=True,
+        with_label=True),
+    test=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=False,
+        with_label=False,
+        test_mode=True))
+# optimizer
+optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+    policy='step',
+    warmup='linear',
+    warmup_iters=500,
+    warmup_ratio=1.0 / 3,
+    step=[8, 11])
+checkpoint_config = dict(interval=1)
+# yapf:disable
+log_config = dict(
+    interval=50,
+    hooks=[
+        dict(type='TextLoggerHook'),
+        # dict(type='TensorboardLoggerHook')
+    ])
+# yapf:enable
+# runtime settings
+total_epochs = 12
+dist_params = dict(backend='nccl')
+log_level = 'INFO'
+work_dir = './work_dirs/cascade_rcnn_r50_fpn_1x'
+load_from = None
+resume_from = None
+workflow = [('train', 1)]
diff --git a/configs/faster_rcnn_x101_32x4d_fpn_1x.py b/configs/faster_rcnn_x101_32x4d_fpn_1x.py
new file mode 100644
index 0000000..6db6625
--- /dev/null
+++ b/configs/faster_rcnn_x101_32x4d_fpn_1x.py
@@ -0,0 +1,158 @@
+# model settings
+model = dict(
+    type='FasterRCNN',
+    pretrained='open-mmlab://resnext101_32x4d',
+    backbone=dict(
+        type='ResNeXt',
+        depth=101,
+        groups=32,
+        base_width=4,
+        num_stages=4,
+        out_indices=(0, 1, 2, 3),
+        frozen_stages=1,
+        style='pytorch'),
+    neck=dict(
+        type='FPN',
+        in_channels=[256, 512, 1024, 2048],
+        out_channels=256,
+        num_outs=5),
+    rpn_head=dict(
+        type='RPNHead',
+        in_channels=256,
+        feat_channels=256,
+        anchor_scales=[8],
+        anchor_ratios=[0.5, 1.0, 2.0],
+        anchor_strides=[4, 8, 16, 32, 64],
+        target_means=[.0, .0, .0, .0],
+        target_stds=[1.0, 1.0, 1.0, 1.0],
+        use_sigmoid_cls=True),
+    bbox_roi_extractor=dict(
+        type='SingleRoIExtractor',
+        roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
+        out_channels=256,
+        featmap_strides=[4, 8, 16, 32]),
+    bbox_head=dict(
+        type='SharedFCBBoxHead',
+        num_fcs=2,
+        in_channels=256,
+        fc_out_channels=1024,
+        roi_feat_size=7,
+        num_classes=81,
+        target_means=[0., 0., 0., 0.],
+        target_stds=[0.1, 0.1, 0.2, 0.2],
+        reg_class_agnostic=False))
+# model training and testing settings
+train_cfg = dict(
+    rpn=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.7,
+            neg_iou_thr=0.3,
+            min_pos_iou=0.3,
+            ignore_iof_thr=-1),
+        sampler=dict(
+            type='RandomSampler',
+            num=256,
+            pos_fraction=0.5,
+            neg_pos_ub=-1,
+            add_gt_as_proposals=False),
+        allowed_border=0,
+        pos_weight=-1,
+        smoothl1_beta=1 / 9.0,
+        debug=False),
+    rcnn=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.5,
+            neg_iou_thr=0.5,
+            min_pos_iou=0.5,
+            ignore_iof_thr=-1),
+        sampler=dict(
+            type='RandomSampler',
+            num=512,
+            pos_fraction=0.25,
+            neg_pos_ub=-1,
+            add_gt_as_proposals=True),
+        pos_weight=-1,
+        debug=False))
+test_cfg = dict(
+    rpn=dict(
+        nms_across_levels=False,
+        nms_pre=2000,
+        nms_post=2000,
+        max_num=2000,
+        nms_thr=0.7,
+        min_bbox_size=0),
+    rcnn=dict(
+        score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100)
+    # soft-nms is also supported for rcnn testing
+    # e.g., nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.05)
+)
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+data = dict(
+    imgs_per_gpu=2,
+    workers_per_gpu=2,
+    train=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_train2017.json',
+        img_prefix=data_root + 'train2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0.5,
+        with_mask=False,
+        with_crowd=True,
+        with_label=True),
+    val=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=False,
+        with_crowd=True,
+        with_label=True),
+    test=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=False,
+        with_label=False,
+        test_mode=True))
+# optimizer
+optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+    policy='step',
+    warmup='linear',
+    warmup_iters=500,
+    warmup_ratio=1.0 / 3,
+    step=[8, 11])
+checkpoint_config = dict(interval=1)
+# yapf:disable
+log_config = dict(
+    interval=50,
+    hooks=[
+        dict(type='TextLoggerHook'),
+        # dict(type='TensorboardLoggerHook')
+    ])
+# yapf:enable
+# runtime settings
+total_epochs = 12
+dist_params = dict(backend='nccl')
+log_level = 'INFO'
+work_dir = './work_dirs/faster_rcnn_r50_fpn_1x'
+load_from = None
+resume_from = None
+workflow = [('train', 1)]
diff --git a/configs/faster_rcnn_x101_64x4d_fpn_1x.py b/configs/faster_rcnn_x101_64x4d_fpn_1x.py
new file mode 100644
index 0000000..f4df48b
--- /dev/null
+++ b/configs/faster_rcnn_x101_64x4d_fpn_1x.py
@@ -0,0 +1,158 @@
+# model settings
+model = dict(
+    type='FasterRCNN',
+    pretrained='open-mmlab://resnext101_64x4d',
+    backbone=dict(
+        type='ResNeXt',
+        depth=101,
+        groups=64,
+        base_width=4,
+        num_stages=4,
+        out_indices=(0, 1, 2, 3),
+        frozen_stages=1,
+        style='pytorch'),
+    neck=dict(
+        type='FPN',
+        in_channels=[256, 512, 1024, 2048],
+        out_channels=256,
+        num_outs=5),
+    rpn_head=dict(
+        type='RPNHead',
+        in_channels=256,
+        feat_channels=256,
+        anchor_scales=[8],
+        anchor_ratios=[0.5, 1.0, 2.0],
+        anchor_strides=[4, 8, 16, 32, 64],
+        target_means=[.0, .0, .0, .0],
+        target_stds=[1.0, 1.0, 1.0, 1.0],
+        use_sigmoid_cls=True),
+    bbox_roi_extractor=dict(
+        type='SingleRoIExtractor',
+        roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
+        out_channels=256,
+        featmap_strides=[4, 8, 16, 32]),
+    bbox_head=dict(
+        type='SharedFCBBoxHead',
+        num_fcs=2,
+        in_channels=256,
+        fc_out_channels=1024,
+        roi_feat_size=7,
+        num_classes=81,
+        target_means=[0., 0., 0., 0.],
+        target_stds=[0.1, 0.1, 0.2, 0.2],
+        reg_class_agnostic=False))
+# model training and testing settings
+train_cfg = dict(
+    rpn=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.7,
+            neg_iou_thr=0.3,
+            min_pos_iou=0.3,
+            ignore_iof_thr=-1),
+        sampler=dict(
+            type='RandomSampler',
+            num=256,
+            pos_fraction=0.5,
+            neg_pos_ub=-1,
+            add_gt_as_proposals=False),
+        allowed_border=0,
+        pos_weight=-1,
+        smoothl1_beta=1 / 9.0,
+        debug=False),
+    rcnn=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.5,
+            neg_iou_thr=0.5,
+            min_pos_iou=0.5,
+            ignore_iof_thr=-1),
+        sampler=dict(
+            type='RandomSampler',
+            num=512,
+            pos_fraction=0.25,
+            neg_pos_ub=-1,
+            add_gt_as_proposals=True),
+        pos_weight=-1,
+        debug=False))
+test_cfg = dict(
+    rpn=dict(
+        nms_across_levels=False,
+        nms_pre=2000,
+        nms_post=2000,
+        max_num=2000,
+        nms_thr=0.7,
+        min_bbox_size=0),
+    rcnn=dict(
+        score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100)
+    # soft-nms is also supported for rcnn testing
+    # e.g., nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.05)
+)
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+data = dict(
+    imgs_per_gpu=2,
+    workers_per_gpu=2,
+    train=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_train2017.json',
+        img_prefix=data_root + 'train2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0.5,
+        with_mask=False,
+        with_crowd=True,
+        with_label=True),
+    val=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=False,
+        with_crowd=True,
+        with_label=True),
+    test=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=False,
+        with_label=False,
+        test_mode=True))
+# optimizer
+optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+    policy='step',
+    warmup='linear',
+    warmup_iters=500,
+    warmup_ratio=1.0 / 3,
+    step=[8, 11])
+checkpoint_config = dict(interval=1)
+# yapf:disable
+log_config = dict(
+    interval=50,
+    hooks=[
+        dict(type='TextLoggerHook'),
+        # dict(type='TensorboardLoggerHook')
+    ])
+# yapf:enable
+# runtime settings
+total_epochs = 12
+dist_params = dict(backend='nccl')
+log_level = 'INFO'
+work_dir = './work_dirs/faster_rcnn_r50_fpn_1x'
+load_from = None
+resume_from = None
+workflow = [('train', 1)]
diff --git a/configs/mask_rcnn_x101_32x4d_fpn_1x.py b/configs/mask_rcnn_x101_32x4d_fpn_1x.py
new file mode 100644
index 0000000..7333545
--- /dev/null
+++ b/configs/mask_rcnn_x101_32x4d_fpn_1x.py
@@ -0,0 +1,170 @@
+# model settings
+model = dict(
+    type='MaskRCNN',
+    pretrained='open-mmlab://resnext101_32x4d',
+    backbone=dict(
+        type='ResNeXt',
+        depth=101,
+        groups=32,
+        base_width=4,
+        num_stages=4,
+        out_indices=(0, 1, 2, 3),
+        frozen_stages=1,
+        style='pytorch'),
+    neck=dict(
+        type='FPN',
+        in_channels=[256, 512, 1024, 2048],
+        out_channels=256,
+        num_outs=5),
+    rpn_head=dict(
+        type='RPNHead',
+        in_channels=256,
+        feat_channels=256,
+        anchor_scales=[8],
+        anchor_ratios=[0.5, 1.0, 2.0],
+        anchor_strides=[4, 8, 16, 32, 64],
+        target_means=[.0, .0, .0, .0],
+        target_stds=[1.0, 1.0, 1.0, 1.0],
+        use_sigmoid_cls=True),
+    bbox_roi_extractor=dict(
+        type='SingleRoIExtractor',
+        roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
+        out_channels=256,
+        featmap_strides=[4, 8, 16, 32]),
+    bbox_head=dict(
+        type='SharedFCBBoxHead',
+        num_fcs=2,
+        in_channels=256,
+        fc_out_channels=1024,
+        roi_feat_size=7,
+        num_classes=81,
+        target_means=[0., 0., 0., 0.],
+        target_stds=[0.1, 0.1, 0.2, 0.2],
+        reg_class_agnostic=False),
+    mask_roi_extractor=dict(
+        type='SingleRoIExtractor',
+        roi_layer=dict(type='RoIAlign', out_size=14, sample_num=2),
+        out_channels=256,
+        featmap_strides=[4, 8, 16, 32]),
+    mask_head=dict(
+        type='FCNMaskHead',
+        num_convs=4,
+        in_channels=256,
+        conv_out_channels=256,
+        num_classes=81))
+# model training and testing settings
+train_cfg = dict(
+    rpn=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.7,
+            neg_iou_thr=0.3,
+            min_pos_iou=0.3,
+            ignore_iof_thr=-1),
+        sampler=dict(
+            type='RandomSampler',
+            num=256,
+            pos_fraction=0.5,
+            neg_pos_ub=-1,
+            add_gt_as_proposals=False),
+        allowed_border=0,
+        pos_weight=-1,
+        smoothl1_beta=1 / 9.0,
+        debug=False),
+    rcnn=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.5,
+            neg_iou_thr=0.5,
+            min_pos_iou=0.5,
+            ignore_iof_thr=-1),
+        sampler=dict(
+            type='RandomSampler',
+            num=512,
+            pos_fraction=0.25,
+            neg_pos_ub=-1,
+            add_gt_as_proposals=True),
+        mask_size=28,
+        pos_weight=-1,
+        debug=False))
+test_cfg = dict(
+    rpn=dict(
+        nms_across_levels=False,
+        nms_pre=2000,
+        nms_post=2000,
+        max_num=2000,
+        nms_thr=0.7,
+        min_bbox_size=0),
+    rcnn=dict(
+        score_thr=0.05,
+        nms=dict(type='nms', iou_thr=0.5),
+        max_per_img=100,
+        mask_thr_binary=0.5))
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+data = dict(
+    imgs_per_gpu=2,
+    workers_per_gpu=2,
+    train=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_train2017.json',
+        img_prefix=data_root + 'train2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0.5,
+        with_mask=True,
+        with_crowd=True,
+        with_label=True),
+    val=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=True,
+        with_crowd=True,
+        with_label=True),
+    test=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=False,
+        with_label=False,
+        test_mode=True))
+# optimizer
+optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+    policy='step',
+    warmup='linear',
+    warmup_iters=500,
+    warmup_ratio=1.0 / 3,
+    step=[8, 11])
+checkpoint_config = dict(interval=1)
+# yapf:disable
+log_config = dict(
+    interval=50,
+    hooks=[
+        dict(type='TextLoggerHook'),
+        # dict(type='TensorboardLoggerHook')
+    ])
+# yapf:enable
+# runtime settings
+total_epochs = 12
+dist_params = dict(backend='nccl')
+log_level = 'INFO'
+work_dir = './work_dirs/mask_rcnn_r50_fpn_1x'
+load_from = None
+resume_from = None
+workflow = [('train', 1)]
diff --git a/configs/mask_rcnn_x101_64x4d_fpn_1x.py b/configs/mask_rcnn_x101_64x4d_fpn_1x.py
new file mode 100644
index 0000000..c19160d
--- /dev/null
+++ b/configs/mask_rcnn_x101_64x4d_fpn_1x.py
@@ -0,0 +1,170 @@
+# model settings
+model = dict(
+    type='MaskRCNN',
+    pretrained='open-mmlab://resnext101_64x4d',
+    backbone=dict(
+        type='ResNeXt',
+        depth=101,
+        groups=64,
+        base_width=4,
+        num_stages=4,
+        out_indices=(0, 1, 2, 3),
+        frozen_stages=1,
+        style='pytorch'),
+    neck=dict(
+        type='FPN',
+        in_channels=[256, 512, 1024, 2048],
+        out_channels=256,
+        num_outs=5),
+    rpn_head=dict(
+        type='RPNHead',
+        in_channels=256,
+        feat_channels=256,
+        anchor_scales=[8],
+        anchor_ratios=[0.5, 1.0, 2.0],
+        anchor_strides=[4, 8, 16, 32, 64],
+        target_means=[.0, .0, .0, .0],
+        target_stds=[1.0, 1.0, 1.0, 1.0],
+        use_sigmoid_cls=True),
+    bbox_roi_extractor=dict(
+        type='SingleRoIExtractor',
+        roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
+        out_channels=256,
+        featmap_strides=[4, 8, 16, 32]),
+    bbox_head=dict(
+        type='SharedFCBBoxHead',
+        num_fcs=2,
+        in_channels=256,
+        fc_out_channels=1024,
+        roi_feat_size=7,
+        num_classes=81,
+        target_means=[0., 0., 0., 0.],
+        target_stds=[0.1, 0.1, 0.2, 0.2],
+        reg_class_agnostic=False),
+    mask_roi_extractor=dict(
+        type='SingleRoIExtractor',
+        roi_layer=dict(type='RoIAlign', out_size=14, sample_num=2),
+        out_channels=256,
+        featmap_strides=[4, 8, 16, 32]),
+    mask_head=dict(
+        type='FCNMaskHead',
+        num_convs=4,
+        in_channels=256,
+        conv_out_channels=256,
+        num_classes=81))
+# model training and testing settings
+train_cfg = dict(
+    rpn=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.7,
+            neg_iou_thr=0.3,
+            min_pos_iou=0.3,
+            ignore_iof_thr=-1),
+        sampler=dict(
+            type='RandomSampler',
+            num=256,
+            pos_fraction=0.5,
+            neg_pos_ub=-1,
+            add_gt_as_proposals=False),
+        allowed_border=0,
+        pos_weight=-1,
+        smoothl1_beta=1 / 9.0,
+        debug=False),
+    rcnn=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.5,
+            neg_iou_thr=0.5,
+            min_pos_iou=0.5,
+            ignore_iof_thr=-1),
+        sampler=dict(
+            type='RandomSampler',
+            num=512,
+            pos_fraction=0.25,
+            neg_pos_ub=-1,
+            add_gt_as_proposals=True),
+        mask_size=28,
+        pos_weight=-1,
+        debug=False))
+test_cfg = dict(
+    rpn=dict(
+        nms_across_levels=False,
+        nms_pre=2000,
+        nms_post=2000,
+        max_num=2000,
+        nms_thr=0.7,
+        min_bbox_size=0),
+    rcnn=dict(
+        score_thr=0.05,
+        nms=dict(type='nms', iou_thr=0.5),
+        max_per_img=100,
+        mask_thr_binary=0.5))
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+data = dict(
+    imgs_per_gpu=2,
+    workers_per_gpu=2,
+    train=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_train2017.json',
+        img_prefix=data_root + 'train2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0.5,
+        with_mask=True,
+        with_crowd=True,
+        with_label=True),
+    val=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=True,
+        with_crowd=True,
+        with_label=True),
+    test=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=False,
+        with_label=False,
+        test_mode=True))
+# optimizer
+optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+    policy='step',
+    warmup='linear',
+    warmup_iters=500,
+    warmup_ratio=1.0 / 3,
+    step=[8, 11])
+checkpoint_config = dict(interval=1)
+# yapf:disable
+log_config = dict(
+    interval=50,
+    hooks=[
+        dict(type='TextLoggerHook'),
+        # dict(type='TensorboardLoggerHook')
+    ])
+# yapf:enable
+# runtime settings
+total_epochs = 12
+dist_params = dict(backend='nccl')
+log_level = 'INFO'
+work_dir = './work_dirs/mask_rcnn_r50_fpn_1x'
+load_from = None
+resume_from = None
+workflow = [('train', 1)]
diff --git a/configs/retinanet_x101_32x4d_fpn_1x.py b/configs/retinanet_x101_32x4d_fpn_1x.py
new file mode 100644
index 0000000..3f7741b
--- /dev/null
+++ b/configs/retinanet_x101_32x4d_fpn_1x.py
@@ -0,0 +1,122 @@
+# model settings
+model = dict(
+    type='RetinaNet',
+    pretrained='open-mmlab://resnext101_32x4d',
+    backbone=dict(
+        type='ResNeXt',
+        depth=101,
+        groups=32,
+        base_width=4,
+        num_stages=4,
+        out_indices=(0, 1, 2, 3),
+        frozen_stages=1,
+        style='pytorch'),
+    neck=dict(
+        type='FPN',
+        in_channels=[256, 512, 1024, 2048],
+        out_channels=256,
+        start_level=1,
+        add_extra_convs=True,
+        num_outs=5),
+    bbox_head=dict(
+        type='RetinaHead',
+        num_classes=81,
+        in_channels=256,
+        stacked_convs=4,
+        feat_channels=256,
+        octave_base_scale=4,
+        scales_per_octave=3,
+        anchor_ratios=[0.5, 1.0, 2.0],
+        anchor_strides=[8, 16, 32, 64, 128],
+        target_means=[.0, .0, .0, .0],
+        target_stds=[1.0, 1.0, 1.0, 1.0]))
+# training and testing settings
+train_cfg = dict(
+    assigner=dict(
+        type='MaxIoUAssigner',
+        pos_iou_thr=0.5,
+        neg_iou_thr=0.4,
+        min_pos_iou=0,
+        ignore_iof_thr=-1),
+    smoothl1_beta=0.11,
+    gamma=2.0,
+    alpha=0.25,
+    allowed_border=-1,
+    pos_weight=-1,
+    debug=False)
+test_cfg = dict(
+    nms_pre=1000,
+    min_bbox_size=0,
+    score_thr=0.05,
+    nms=dict(type='nms', iou_thr=0.5),
+    max_per_img=100)
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+data = dict(
+    imgs_per_gpu=2,
+    workers_per_gpu=2,
+    train=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_train2017.json',
+        img_prefix=data_root + 'train2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0.5,
+        with_mask=False,
+        with_crowd=False,
+        with_label=True),
+    val=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=False,
+        with_crowd=False,
+        with_label=True),
+    test=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=False,
+        with_crowd=False,
+        with_label=False,
+        test_mode=True))
+# optimizer
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+    policy='step',
+    warmup='linear',
+    warmup_iters=500,
+    warmup_ratio=1.0 / 3,
+    step=[8, 11])
+checkpoint_config = dict(interval=1)
+# yapf:disable
+log_config = dict(
+    interval=50,
+    hooks=[
+        dict(type='TextLoggerHook'),
+        # dict(type='TensorboardLoggerHook')
+    ])
+# yapf:enable
+# runtime settings
+total_epochs = 12
+device_ids = range(8)
+dist_params = dict(backend='nccl')
+log_level = 'INFO'
+work_dir = './work_dirs/retinanet_r50_fpn_1x'
+load_from = None
+resume_from = None
+workflow = [('train', 1)]
diff --git a/configs/retinanet_x101_64x4d_fpn_1x.py b/configs/retinanet_x101_64x4d_fpn_1x.py
new file mode 100644
index 0000000..2ef8b53
--- /dev/null
+++ b/configs/retinanet_x101_64x4d_fpn_1x.py
@@ -0,0 +1,122 @@
+# model settings
+model = dict(
+    type='RetinaNet',
+    pretrained='open-mmlab://resnext101_64x4d',
+    backbone=dict(
+        type='ResNeXt',
+        depth=101,
+        groups=64,
+        base_width=4,
+        num_stages=4,
+        out_indices=(0, 1, 2, 3),
+        frozen_stages=1,
+        style='pytorch'),
+    neck=dict(
+        type='FPN',
+        in_channels=[256, 512, 1024, 2048],
+        out_channels=256,
+        start_level=1,
+        add_extra_convs=True,
+        num_outs=5),
+    bbox_head=dict(
+        type='RetinaHead',
+        num_classes=81,
+        in_channels=256,
+        stacked_convs=4,
+        feat_channels=256,
+        octave_base_scale=4,
+        scales_per_octave=3,
+        anchor_ratios=[0.5, 1.0, 2.0],
+        anchor_strides=[8, 16, 32, 64, 128],
+        target_means=[.0, .0, .0, .0],
+        target_stds=[1.0, 1.0, 1.0, 1.0]))
+# training and testing settings
+train_cfg = dict(
+    assigner=dict(
+        type='MaxIoUAssigner',
+        pos_iou_thr=0.5,
+        neg_iou_thr=0.4,
+        min_pos_iou=0,
+        ignore_iof_thr=-1),
+    smoothl1_beta=0.11,
+    gamma=2.0,
+    alpha=0.25,
+    allowed_border=-1,
+    pos_weight=-1,
+    debug=False)
+test_cfg = dict(
+    nms_pre=1000,
+    min_bbox_size=0,
+    score_thr=0.05,
+    nms=dict(type='nms', iou_thr=0.5),
+    max_per_img=100)
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+data = dict(
+    imgs_per_gpu=2,
+    workers_per_gpu=2,
+    train=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_train2017.json',
+        img_prefix=data_root + 'train2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0.5,
+        with_mask=False,
+        with_crowd=False,
+        with_label=True),
+    val=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=False,
+        with_crowd=False,
+        with_label=True),
+    test=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=False,
+        with_crowd=False,
+        with_label=False,
+        test_mode=True))
+# optimizer
+optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+# learning policy
+lr_config = dict(
+    policy='step',
+    warmup='linear',
+    warmup_iters=500,
+    warmup_ratio=1.0 / 3,
+    step=[8, 11])
+checkpoint_config = dict(interval=1)
+# yapf:disable
+log_config = dict(
+    interval=50,
+    hooks=[
+        dict(type='TextLoggerHook'),
+        # dict(type='TensorboardLoggerHook')
+    ])
+# yapf:enable
+# runtime settings
+total_epochs = 12
+device_ids = range(8)
+dist_params = dict(backend='nccl')
+log_level = 'INFO'
+work_dir = './work_dirs/retinanet_r50_fpn_1x'
+load_from = None
+resume_from = None
+workflow = [('train', 1)]
diff --git a/configs/rpn_x101_32x4d_fpn_1x.py b/configs/rpn_x101_32x4d_fpn_1x.py
new file mode 100644
index 0000000..c23d715
--- /dev/null
+++ b/configs/rpn_x101_32x4d_fpn_1x.py
@@ -0,0 +1,123 @@
+# model settings
+model = dict(
+    type='RPN',
+    pretrained='open-mmlab://resnext101_32x4d',
+    backbone=dict(
+        type='ResNeXt',
+        depth=101,
+        groups=32,
+        base_width=4,
+        num_stages=4,
+        out_indices=(0, 1, 2, 3),
+        frozen_stages=1,
+        style='pytorch'),
+    neck=dict(
+        type='FPN',
+        in_channels=[256, 512, 1024, 2048],
+        out_channels=256,
+        num_outs=5),
+    rpn_head=dict(
+        type='RPNHead',
+        in_channels=256,
+        feat_channels=256,
+        anchor_scales=[8],
+        anchor_ratios=[0.5, 1.0, 2.0],
+        anchor_strides=[4, 8, 16, 32, 64],
+        target_means=[.0, .0, .0, .0],
+        target_stds=[1.0, 1.0, 1.0, 1.0],
+        use_sigmoid_cls=True))
+# model training and testing settings
+train_cfg = dict(
+    rpn=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.7,
+            neg_iou_thr=0.3,
+            min_pos_iou=0.3,
+            ignore_iof_thr=-1),
+        sampler=dict(
+            type='RandomSampler',
+            num=256,
+            pos_fraction=0.5,
+            neg_pos_ub=-1,
+            add_gt_as_proposals=False),
+        allowed_border=0,
+        pos_weight=-1,
+        smoothl1_beta=1 / 9.0,
+        debug=False))
+test_cfg = dict(
+    rpn=dict(
+        nms_across_levels=False,
+        nms_pre=2000,
+        nms_post=2000,
+        max_num=2000,
+        nms_thr=0.7,
+        min_bbox_size=0))
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+data = dict(
+    imgs_per_gpu=2,
+    workers_per_gpu=2,
+    train=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_train2017.json',
+        img_prefix=data_root + 'train2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0.5,
+        with_mask=False,
+        with_crowd=False,
+        with_label=False),
+    val=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=False,
+        with_crowd=False,
+        with_label=False),
+    test=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=False,
+        with_label=False,
+        test_mode=True))
+# optimizer
+optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
+# runner configs
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+lr_config = dict(
+    policy='step',
+    warmup='linear',
+    warmup_iters=500,
+    warmup_ratio=1.0 / 3,
+    step=[8, 11])
+checkpoint_config = dict(interval=1)
+# yapf:disable
+log_config = dict(
+    interval=50,
+    hooks=[
+        dict(type='TextLoggerHook'),
+        # dict(type='TensorboardLoggerHook')
+    ])
+# yapf:enable
+# runtime settings
+total_epochs = 12
+dist_params = dict(backend='nccl')
+log_level = 'INFO'
+work_dir = './work_dirs/rpn_r101_fpn_1x'
+load_from = None
+resume_from = None
+workflow = [('train', 1)]
diff --git a/configs/rpn_x101_64x4d_fpn_1x.py b/configs/rpn_x101_64x4d_fpn_1x.py
new file mode 100644
index 0000000..c34a146
--- /dev/null
+++ b/configs/rpn_x101_64x4d_fpn_1x.py
@@ -0,0 +1,123 @@
+# model settings
+model = dict(
+    type='RPN',
+    pretrained='open-mmlab://resnext101_64x4d',
+    backbone=dict(
+        type='ResNeXt',
+        depth=101,
+        groups=64,
+        base_width=4,
+        num_stages=4,
+        out_indices=(0, 1, 2, 3),
+        frozen_stages=1,
+        style='pytorch'),
+    neck=dict(
+        type='FPN',
+        in_channels=[256, 512, 1024, 2048],
+        out_channels=256,
+        num_outs=5),
+    rpn_head=dict(
+        type='RPNHead',
+        in_channels=256,
+        feat_channels=256,
+        anchor_scales=[8],
+        anchor_ratios=[0.5, 1.0, 2.0],
+        anchor_strides=[4, 8, 16, 32, 64],
+        target_means=[.0, .0, .0, .0],
+        target_stds=[1.0, 1.0, 1.0, 1.0],
+        use_sigmoid_cls=True))
+# model training and testing settings
+train_cfg = dict(
+    rpn=dict(
+        assigner=dict(
+            type='MaxIoUAssigner',
+            pos_iou_thr=0.7,
+            neg_iou_thr=0.3,
+            min_pos_iou=0.3,
+            ignore_iof_thr=-1),
+        sampler=dict(
+            type='RandomSampler',
+            num=256,
+            pos_fraction=0.5,
+            neg_pos_ub=-1,
+            add_gt_as_proposals=False),
+        allowed_border=0,
+        pos_weight=-1,
+        smoothl1_beta=1 / 9.0,
+        debug=False))
+test_cfg = dict(
+    rpn=dict(
+        nms_across_levels=False,
+        nms_pre=2000,
+        nms_post=2000,
+        max_num=2000,
+        nms_thr=0.7,
+        min_bbox_size=0))
+# dataset settings
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+data = dict(
+    imgs_per_gpu=2,
+    workers_per_gpu=2,
+    train=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_train2017.json',
+        img_prefix=data_root + 'train2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0.5,
+        with_mask=False,
+        with_crowd=False,
+        with_label=False),
+    val=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=False,
+        with_crowd=False,
+        with_label=False),
+    test=dict(
+        type=dataset_type,
+        ann_file=data_root + 'annotations/instances_val2017.json',
+        img_prefix=data_root + 'val2017/',
+        img_scale=(1333, 800),
+        img_norm_cfg=img_norm_cfg,
+        size_divisor=32,
+        flip_ratio=0,
+        with_mask=False,
+        with_label=False,
+        test_mode=True))
+# optimizer
+optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
+# runner configs
+optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
+lr_config = dict(
+    policy='step',
+    warmup='linear',
+    warmup_iters=500,
+    warmup_ratio=1.0 / 3,
+    step=[8, 11])
+checkpoint_config = dict(interval=1)
+# yapf:disable
+log_config = dict(
+    interval=50,
+    hooks=[
+        dict(type='TextLoggerHook'),
+        # dict(type='TensorboardLoggerHook')
+    ])
+# yapf:enable
+# runtime settings
+total_epochs = 12
+dist_params = dict(backend='nccl')
+log_level = 'INFO'
+work_dir = './work_dirs/rpn_r101_fpn_1x'
+load_from = None
+resume_from = None
+workflow = [('train', 1)]
diff --git a/mmdet/apis/env.py b/mmdet/apis/env.py
index 57348da..20cd26d 100644
--- a/mmdet/apis/env.py
+++ b/mmdet/apis/env.py
@@ -35,33 +35,7 @@ def _init_dist_mpi(backend, **kwargs):
 
 
 def _init_dist_slurm(backend, **kwargs):
-    proc_id = int(os.environ['SLURM_PROCID'])
-    ntasks = int(os.environ['SLURM_NTASKS'])
-    node_list = os.environ['SLURM_NODELIST']
-    num_gpus = torch.cuda.device_count()
-    torch.cuda.set_device(proc_id % num_gpus)
-    if '[' in node_list:
-        beg = node_list.find('[')
-        pos1 = node_list.find('-', beg)
-        if pos1 < 0:
-            pos1 = 1000
-        pos2 = node_list.find(',', beg)
-        if pos2 < 0:
-            pos2 = 1000
-        node_list = node_list[:min(pos1, pos2)].replace('[', '')
-    addr = node_list[8:].replace('-', '.')
-    os.environ['MASTER_PORT'] = str(kwargs['port'])
-    os.environ['MASTER_ADDR'] = addr
-    os.environ['WORLD_SIZE'] = str(ntasks)
-    os.environ['RANK'] = str(proc_id)
-    if backend == 'nccl':
-        dist.init_process_group(backend='nccl')
-    else:
-        dist.init_process_group(
-            backend='gloo', rank=proc_id, world_size=ntasks)
-    rank = dist.get_rank()
-    world_size = dist.get_world_size()
-    return rank, world_size
+    raise NotImplementedError
 
 
 def set_random_seed(seed):
diff --git a/mmdet/models/backbones/resnet.py b/mmdet/models/backbones/resnet.py
index e25011d..1e76ef0 100644
--- a/mmdet/models/backbones/resnet.py
+++ b/mmdet/models/backbones/resnet.py
@@ -42,7 +42,7 @@ class BasicBlock(nn.Module):
         assert not with_cp
 
     def forward(self, x):
-        residual = x
+        identity = x
 
         out = self.conv1(x)
         out = self.bn1(out)
@@ -52,9 +52,9 @@ class BasicBlock(nn.Module):
         out = self.bn2(out)
 
         if self.downsample is not None:
-            residual = self.downsample(x)
+            identity = self.downsample(x)
 
-        out += residual
+        out += identity
         out = self.relu(out)
 
         return out
@@ -108,7 +108,7 @@ class Bottleneck(nn.Module):
     def forward(self, x):
 
         def _inner_forward(x):
-            residual = x
+            identity = x
 
             out = self.conv1(x)
             out = self.bn1(out)
@@ -122,9 +122,9 @@ class Bottleneck(nn.Module):
             out = self.bn3(out)
 
             if self.downsample is not None:
-                residual = self.downsample(x)
+                identity = self.downsample(x)
 
-            out += residual
+            out += identity
 
             return out
 
diff --git a/mmdet/models/backbones/resnext.py b/mmdet/models/backbones/resnext.py
index 5f0aae7..202c3e4 100644
--- a/mmdet/models/backbones/resnext.py
+++ b/mmdet/models/backbones/resnext.py
@@ -67,7 +67,7 @@ class Bottleneck(nn.Module):
     def forward(self, x):
 
         def _inner_forward(x):
-            residual = x
+            identity = x
 
             out = self.conv1(x)
             out = self.bn1(out)
@@ -81,9 +81,9 @@ class Bottleneck(nn.Module):
             out = self.bn3(out)
 
             if self.downsample is not None:
-                residual = self.downsample(x)
+                identity = self.downsample(x)
 
-            out += residual
+            out += identity
 
             return out
 
@@ -188,8 +188,8 @@ class ResNeXt(ResNet):
         self.inplanes = 64
         self.res_layers = []
         for i, num_blocks in enumerate(self.stage_blocks):
-            stride = self.strides[0][i]
-            dilation = self.dilations[0][i]
+            stride = self.strides[i]
+            dilation = self.dilations[i]
             planes = 64 * 2**i
             res_layer = make_res_layer(
                 self.block,
-- 
GitLab