From 178b5baa7cfed416e7b125cd4a597f134f992584 Mon Sep 17 00:00:00 2001 From: Kai Chen <chenkaidev@gmail.com> Date: Tue, 11 Dec 2018 22:03:17 +0800 Subject: [PATCH] update README --- README.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/README.md b/README.md index 8f217c7..83a49cc 100644 --- a/README.md +++ b/README.md @@ -194,7 +194,7 @@ Here is an example. 'bboxes': <np.ndarray> (n, 4), 'labels': <np.ndarray> (n, ), 'bboxes_ignore': <np.ndarray> (k, 4), - 'labels_ignore': <np.ndarray> (k, 4) (optional field) + 'labels_ignore': <np.ndarray> (k, ) (optional field) } }, ... @@ -206,12 +206,12 @@ There are two ways to work with custom datasets. - online conversion You can write a new Dataset class inherited from `CustomDataset`, and overwrite two methods - `load_annotations(self, ann_file)` and `get_ann_info(self, idx)`, like [CocoDataset](mmdet/datasets/coco.py). + `load_annotations(self, ann_file)` and `get_ann_info(self, idx)`, like [CocoDataset](mmdet/datasets/coco.py) and [VOCDataset](mmdet/datasets/voc.py). - offline conversion You can convert the annotation format to the expected format above and save it to - a pickle file, like [pascal_voc.py](tools/convert_datasets/pascal_voc.py). + a pickle or json file, like [pascal_voc.py](tools/convert_datasets/pascal_voc.py). Then you can simply use `CustomDataset`. ## Technical details -- GitLab