flatland-sparse-small-tree-fc-apex-il-trainer: run: ImitationAgent env: flatland_sparse stop: timesteps_total: 15000000 # 1.5e7 checkpoint_freq: 50 checkpoint_at_end: True keep_checkpoints_num: 50 checkpoint_score_attr: episode_reward_mean num_samples: 3 config: num_workers: 13 num_envs_per_worker: 5 num_gpus: 0 clip_rewards: False vf_clip_param: 500.0 entropy_coeff: 0.01 # effective batch_size: train_batch_size * num_agents_in_each_environment [5, 10] # see https://github.com/ray-project/ray/issues/4628 train_batch_size: 1000 # 5000 rollout_fragment_length: 50 # 100 sgd_minibatch_size: 100 # 500 vf_share_layers: False env_config: observation: tree observation_config: max_depth: 2 shortest_path_max_depth: 30 generator: sparse_rail_generator generator_config: small_v0 wandb: project: flatland-paper entity: aicrowd tags: ["small_v0", "tree_obs", "apex_rllib_il"] # TODO should be set programmatically model: fcnet_activation: relu fcnet_hiddens: [256, 256] vf_share_layers: False # Should be same as ppo vf_shared_layers