From c3d7902294493500245df767d0e21786796e646e Mon Sep 17 00:00:00 2001
From: iggotsul <igorgotsu@gmail.com>
Date: Sun, 24 Apr 2022 22:20:36 +0300
Subject: [PATCH] mmdetection_submission_v0_71

---
 aicrowd.json                 |    4 +-
 configs/queryinst_2rd_tta.py | 1067 ++++++++++++++++++++++++++++++++++
 configs/queryinst_tta.py     |    4 +-
 models/epoch_10_sh.pth       |    3 -
 models/epoch_11_sh.pth       |    3 -
 models/epoch_12_sh.pth       |    3 -
 models/epoch_13_sh.pth       |    3 -
 models/epoch_18_sh.pth       |    3 +
 models/epoch_19_sh.pth       |    3 -
 models/epoch_20_sh.pth       |    3 -
 models/epoch_8_sh.pth        |    3 -
 models/epoch_9_sh.pth        |    3 -
 12 files changed, 1074 insertions(+), 28 deletions(-)
 create mode 100644 configs/queryinst_2rd_tta.py
 delete mode 100644 models/epoch_10_sh.pth
 delete mode 100644 models/epoch_11_sh.pth
 delete mode 100644 models/epoch_12_sh.pth
 delete mode 100644 models/epoch_13_sh.pth
 create mode 100644 models/epoch_18_sh.pth
 delete mode 100644 models/epoch_19_sh.pth
 delete mode 100644 models/epoch_20_sh.pth
 delete mode 100644 models/epoch_8_sh.pth
 delete mode 100644 models/epoch_9_sh.pth

diff --git a/aicrowd.json b/aicrowd.json
index 167b244..ddca007 100644
--- a/aicrowd.json
+++ b/aicrowd.json
@@ -7,7 +7,7 @@
   "license": "MIT",
   "gpu": true,
   "debug": false,
-  "model_path": "models/epoch_20_sh.pth",
+  "model_path": "models/epoch_18_sh.pth",
   "model_type": "mmdetection",
-  "model_config_file": "configs/queryinst_2rd.py"
+  "model_config_file": "configs/queryinst_2rd_tta.py"
 }
diff --git a/configs/queryinst_2rd_tta.py b/configs/queryinst_2rd_tta.py
new file mode 100644
index 0000000..9725b08
--- /dev/null
+++ b/configs/queryinst_2rd_tta.py
@@ -0,0 +1,1067 @@
+dataset_type = 'CocoDataset'
+data_root = 'data/coco/'
+img_norm_cfg = dict(
+    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
+    
+albu_train_transforms = [
+    dict(
+        type='ShiftScaleRotate',
+        shift_limit=0.0725,
+        scale_limit=0.125,
+        rotate_limit=15,
+        interpolation=1,
+        p=0.4),
+    dict(
+        type='OneOf',
+        transforms=[
+            dict(
+                type='RGBShift',
+                r_shift_limit=5,
+                g_shift_limit=5,
+                b_shift_limit=5,
+                p=1.0),
+            dict(
+                type='HueSaturationValue',
+                hue_shift_limit=10,
+                sat_shift_limit=15,
+                val_shift_limit=10,
+                p=1.0),
+            dict(
+                type='RandomBrightnessContrast',
+                brightness_limit=0.2,
+                contrast_limit=0.2,
+                p=1.0
+            )
+        ],
+        p=0.2),
+    dict(
+        type="HorizontalFlip",
+        p=0.4
+    ),
+    dict(
+        type="VerticalFlip",
+        p=0.2
+    ),
+    dict(
+        type="RandomRotate90",
+        p=0.3
+    ),
+    dict(
+        type='OneOf',
+        transforms=[
+            dict(type='Blur', blur_limit=5, p=1.0),
+            dict(type='MedianBlur', blur_limit=5, p=1.0),
+            dict(type='GaussNoise', var_limit=25, p=1.0)
+        ],
+        p=0.2),
+]
+
+
+train_pipeline = [
+    dict(type='LoadImageFromFile'),
+    dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
+    dict(type='RandomFlip', flip_ratio=0.5),
+    dict(
+        type='Albu',
+        transforms=albu_train_transforms,
+        bbox_params=dict(
+            type='BboxParams',
+            format='pascal_voc',
+            label_fields=['gt_labels'],
+            min_visibility=0.3,
+            filter_lost_elements=True),
+        keymap={
+            'img': 'image',
+            'gt_masks': 'masks',
+            'gt_bboxes': 'bboxes'
+        },
+        update_pad_shape=False,
+        skip_img_without_anno=True),
+    dict(
+        type='AutoAugment',
+        policies=[[{
+            'type': 'Resize',
+            'img_scale': [(400, 1333), (1200, 1333)],
+            'multiscale_mode': 'range',
+            'keep_ratio': True
+        }],
+                  [{
+                      'type': 'Resize',
+                      'img_scale': [(400, 1333), (500, 1333), (600, 1333)],
+                      'multiscale_mode': 'value',
+                      'keep_ratio': True
+                  }, {
+                      'type': 'RandomCrop',
+                      'crop_type': 'absolute_range',
+                      'crop_size': (384, 600),
+                      'allow_negative_crop': True
+                  }, {
+                      'type': 'Resize',
+                      'img_scale': [(400, 1333), (1200, 1333)],
+                      'multiscale_mode': 'range',
+                      'override': True,
+                      'keep_ratio': True
+                  }]]),
+    dict(
+        type='Normalize',
+        mean=[123.675, 116.28, 103.53],
+        std=[58.395, 57.12, 57.375],
+        to_rgb=True),
+    dict(type='Pad', size_divisor=32),
+    dict(type='DefaultFormatBundle'),
+    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
+]
+test_pipeline = [
+    dict(type='LoadImageFromFile'),
+    dict(
+        type='MultiScaleFlipAug',
+        img_scale=(1333, 800),
+        flip=True,
+        transforms=[
+            dict(type='Resize', keep_ratio=True),
+            dict(type='RandomFlip'),
+            dict(
+                type='Normalize',
+                mean=[123.675, 116.28, 103.53],
+                std=[58.395, 57.12, 57.375],
+                to_rgb=True),
+            dict(type='Pad', size_divisor=32),
+            dict(type='ImageToTensor', keys=['img']),
+            dict(type='Collect', keys=['img'])
+        ])
+]
+data = dict(
+    samples_per_gpu=2,
+    workers_per_gpu=1,
+    train=dict(
+        type='CocoDataset',
+        ann_file=
+        '/home/nick/segmentation/mmdetection/data/train/annotations_new.json',
+        img_prefix='/home/nick/segmentation/mmdetection/data/train/images',
+        pipeline=train_pipeline,
+        seg_prefix='/home/nick/segmentation/mmdetection/data/train/images',
+        classes=
+        ('beetroot-steamed-without-addition-of-salt', 'bread_wholemeal', 'jam',
+         'water', 'bread', 'banana', 'soft_cheese', 'ham_raw', 'hard_cheese',
+         'cottage_cheese', 'coffee', 'fruit_mixed', 'pancake', 'tea',
+         'salmon_smoked', 'avocado', 'spring_onion_scallion',
+         'ristretto_with_caffeine', 'ham_n_s', 'egg', 'bacon',
+         'chips_french_fries', 'juice_apple', 'chicken', 'tomato', 'broccoli',
+         'shrimp_prawn', 'carrot', 'chickpeas', 'french_salad_dressing',
+         'pasta_hornli_ch', 'sauce_cream', 'pasta_n_s', 'tomato_sauce',
+         'cheese_n_s', 'pear', 'cashew_nut', 'almonds', 'lentil_n_s',
+         'mixed_vegetables', 'peanut_butter', 'apple', 'blueberries',
+         'cucumber', 'yogurt', 'butter', 'mayonnaise', 'soup', 'wine_red',
+         'wine_white', 'green_bean_steamed_without_addition_of_salt',
+         'sausage', 'pizza_margherita_baked', 'salami_ch', 'mushroom',
+         'tart_n_s', 'rice', 'white_coffee', 'sunflower_seeds',
+         'bell_pepper_red_raw', 'zucchini', 'asparagus', 'tartar_sauce',
+         'lye_pretzel_soft', 'cucumber_pickled_ch', 'curry_vegetarian',
+         'soup_of_lentils_dahl_dhal', 'salmon',
+         'salt_cake_ch_vegetables_filled', 'orange', 'pasta_noodles',
+         'cream_double_cream_heavy_cream_45', 'cake_chocolate',
+         'pasta_spaghetti', 'black_olives', 'parmesan', 'spaetzle',
+         'salad_lambs_ear', 'salad_leaf_salad_green', 'potato',
+         'white_cabbage', 'halloumi', 'beetroot_raw', 'bread_grain',
+         'applesauce', 'cheese_for_raclette_ch', 'bread_white',
+         'curds_natural', 'quiche', 'beef_n_s',
+         'taboule_prepared_with_couscous', 'aubergine_eggplant', 'mozzarella',
+         'pasta_penne', 'lasagne_vegetable_prepared', 'mandarine', 'kiwi',
+         'french_beans', 'spring_roll_fried',
+         'caprese_salad_tomato_mozzarella', 'leaf_spinach',
+         'roll_of_half_white_or_white_flour_with_large_void',
+         'omelette_with_flour_thick_crepe_plain', 'tuna', 'dark_chocolate',
+         'sauce_savoury_n_s', 'raisins_dried',
+         'ice_tea_on_black_tea_basis', 'kaki', 'smoothie',
+         'crepe_with_flour_plain', 'nuggets', 'chili_con_carne_prepared',
+         'veggie_burger', 'chinese_cabbage', 'hamburger', 'soup_pumpkin',
+         'sushi', 'chestnuts_ch', 'sauce_soya', 'balsamic_salad_dressing',
+         'pasta_twist', 'bolognaise_sauce', 'leek', 'fajita_bread_only',
+         'potato_gnocchi', 'rice_noodles_vermicelli', 'bread_whole_wheat',
+         'onion', 'garlic', 'hummus', 'pizza_with_vegetables_baked', 'beer',
+         'glucose_drink_50g', 'ratatouille', 'peanut', 'cauliflower',
+         'green_olives', 'bread_pita', 'pasta_wholemeal', 'sauce_pesto',
+         'couscous', 'sauce', 'bread_toast', 'water_with_lemon_juice',
+         'espresso', 'egg_scrambled', 'juice_orange', 'braided_white_loaf_ch',
+         'emmental_cheese_ch',
+         'hazelnut_chocolate_spread_nutella_ovomaltine_caotina', 'tomme_ch',
+         'hazelnut', 'peach', 'figs',
+         'mashed_potatoes_prepared_with_full_fat_milk_with_butter', 'pumpkin',
+         'swiss_chard', 'red_cabbage_raw', 'spinach_raw',
+         'chicken_curry_cream_coconut_milk_curry_spices_paste',
+         'crunch_muesli', 'biscuit', 'meatloaf_ch', 'fresh_cheese_n_s',
+         'honey', 'vegetable_mix_peas_and_carrots', 'parsley', 'brownie',
+         'ice_cream_n_s', 'salad_dressing', 'dried_meat_n_s', 'chicken_breast',
+         'mixed_salad_chopped_without_sauce', 'feta', 'praline_n_s', 'walnut',
+         'potato_salad', 'kolhrabi', 'alfa_sprouts', 'brussel_sprouts',
+         'gruyere_ch', 'bulgur', 'grapes', 'chocolate_egg_small', 'cappuccino',
+         'crisp_bread', 'bread_black', 'rosti_n_s', 'mango', 'muesli_dry',
+         'spinach', 'fish_n_s', 'risotto', 'crisps_ch', 'pork_n_s',
+         'pomegranate', 'sweet_corn', 'flakes', 'greek_salad', 'sesame_seeds',
+         'bouillon', 'baked_potato', 'fennel', 'meat_n_s', 'croutons',
+         'bell_pepper_red_stewed', 'nuts', 'breadcrumbs_unspiced', 'fondue',
+         'sauce_mushroom', 'strawberries', 'pie_plum_baked_with_cake_dough',
+         'potatoes_au_gratin_dauphinois_prepared', 'capers',
+         'bread_wholemeal_toast', 'red_radish', 'fruit_tart', 'beans_kidney',
+         'sauerkraut', 'mustard', 'country_fries', 'ketchup',
+         'pasta_linguini_parpadelle_tagliatelle',
+         'chicken_cut_into_stripes_only_meat', 'cookies', 'sun_dried_tomatoe',
+         'bread_ticino_ch', 'semi_hard_cheese',
+         'porridge_prepared_with_partially_skimmed_milk', 'juice',
+         'chocolate_milk', 'bread_fruit', 'corn', 'dates', 'pistachio',
+         'cream_cheese_n_s', 'bread_rye', 'witloof_chicory',
+         'goat_cheese_soft', 'grapefruit_pomelo', 'blue_mould_cheese',
+         'guacamole', 'tofu', 'cordon_bleu', 'quinoa', 'kefir_drink',
+         'salad_rocket', 'pizza_with_ham_with_mushrooms_baked', 'fruit_coulis',
+         'plums', 'pizza_with_ham_baked', 'pineapple', 'seeds_n_s', 'focaccia',
+         'mixed_milk_beverage', 'coleslaw_chopped_without_sauce',
+         'sweet_potato', 'chicken_leg', 'croissant', 'cheesecake',
+         'sauce_cocktail', 'croissant_with_chocolate_filling', 'pumpkin_seeds',
+         'artichoke', 'soft_drink_with_a_taste', 'apple_pie',
+         'white_bread_with_butter_eggs_and_milk', 'savoury_pastry_stick',
+         'tuna_in_oil_drained', 'meat_terrine_pate', 'falafel_balls',
+         'berries_n_s', 'latte_macchiato',
+         'sugar_melon_galia_honeydew_cantaloupe', 'mixed_seeds_n_s',
+         'oil_vinegar_salad_dressing', 'celeriac', 'chocolate_mousse', 'lemon',
+         'chocolate_cookies', 'birchermuesli_prepared_no_sugar_added',
+         'muffin', 'pine_nuts', 'french_pizza_from_alsace_baked',
+         'chocolate_n_s', 'grits_polenta_maize_flour', 'wine_rose',
+         'cola_based_drink', 'raspberries', 'roll_with_pieces_of_chocolate',
+         'cake_lemon', 'rice_wild', 'gluten_free_bread', 'pearl_onion',
+         'tzatziki', 'ham_croissant_ch', 'corn_crisps',
+         'lentils_green_du_puy_du_berry', 'rice_whole_grain', 'cervelat_ch',
+         'aperitif_with_alcohol_n_s_aperol_spritz', 'peas', 'tiramisu',
+         'apricots', 'lasagne_meat_prepared', 'brioche',
+         'vegetable_au_gratin_baked', 'basil', 'butter_spread_puree_almond',
+         'pie_apricot', 'rusk_wholemeal', 'pasta_in_conch_form',
+         'pasta_in_butterfly_form_farfalle', 'damson_plum', 'shoots_n_s',
+         'coconut', 'banana_cake', 'sauce_curry', 'watermelon_fresh',
+         'white_asparagus', 'cherries', 'nectarine')),
+    val=dict(
+        type='CocoDataset',
+        ann_file=
+        '/home/nick/segmentation/mmdetection/data/val/annotations_new.json',
+        img_prefix='/home/nick/segmentation/mmdetection/data/val/images',
+        pipeline=[
+            dict(type='LoadImageFromFile'),
+            dict(
+                type='MultiScaleFlipAug',
+                img_scale=(1333, 800),
+                flip=False,
+                transforms=[
+                    dict(type='Resize', keep_ratio=True),
+                    dict(type='RandomFlip'),
+                    dict(
+                        type='Normalize',
+                        mean=[123.675, 116.28, 103.53],
+                        std=[58.395, 57.12, 57.375],
+                        to_rgb=True),
+                    dict(type='Pad', size_divisor=32),
+                    dict(type='ImageToTensor', keys=['img']),
+                    dict(type='Collect', keys=['img'])
+                ])
+        ],
+        classes=
+        ('beetroot-steamed-without-addition-of-salt', 'bread_wholemeal', 'jam',
+         'water', 'bread', 'banana', 'soft_cheese', 'ham_raw', 'hard_cheese',
+         'cottage_cheese', 'coffee', 'fruit_mixed', 'pancake', 'tea',
+         'salmon_smoked', 'avocado', 'spring_onion_scallion',
+         'ristretto_with_caffeine', 'ham_n_s', 'egg', 'bacon',
+         'chips_french_fries', 'juice_apple', 'chicken', 'tomato', 'broccoli',
+         'shrimp_prawn', 'carrot', 'chickpeas', 'french_salad_dressing',
+         'pasta_hornli_ch', 'sauce_cream', 'pasta_n_s', 'tomato_sauce',
+         'cheese_n_s', 'pear', 'cashew_nut', 'almonds', 'lentil_n_s',
+         'mixed_vegetables', 'peanut_butter', 'apple', 'blueberries',
+         'cucumber', 'yogurt', 'butter', 'mayonnaise', 'soup', 'wine_red',
+         'wine_white', 'green_bean_steamed_without_addition_of_salt',
+         'sausage', 'pizza_margherita_baked', 'salami_ch', 'mushroom',
+         'tart_n_s', 'rice', 'white_coffee', 'sunflower_seeds',
+         'bell_pepper_red_raw', 'zucchini', 'asparagus', 'tartar_sauce',
+         'lye_pretzel_soft', 'cucumber_pickled_ch', 'curry_vegetarian',
+         'soup_of_lentils_dahl_dhal', 'salmon',
+         'salt_cake_ch_vegetables_filled', 'orange', 'pasta_noodles',
+         'cream_double_cream_heavy_cream_45', 'cake_chocolate',
+         'pasta_spaghetti', 'black_olives', 'parmesan', 'spaetzle',
+         'salad_lambs_ear', 'salad_leaf_salad_green', 'potato',
+         'white_cabbage', 'halloumi', 'beetroot_raw', 'bread_grain',
+         'applesauce', 'cheese_for_raclette_ch', 'bread_white',
+         'curds_natural', 'quiche', 'beef_n_s',
+         'taboule_prepared_with_couscous', 'aubergine_eggplant', 'mozzarella',
+         'pasta_penne', 'lasagne_vegetable_prepared', 'mandarine', 'kiwi',
+         'french_beans', 'spring_roll_fried',
+         'caprese_salad_tomato_mozzarella', 'leaf_spinach',
+         'roll_of_half_white_or_white_flour_with_large_void',
+         'omelette_with_flour_thick_crepe_plain', 'tuna', 'dark_chocolate',
+         'sauce_savoury_n_s', 'raisins_dried',
+         'ice_tea_on_black_tea_basis', 'kaki', 'smoothie',
+         'crepe_with_flour_plain', 'nuggets', 'chili_con_carne_prepared',
+         'veggie_burger', 'chinese_cabbage', 'hamburger', 'soup_pumpkin',
+         'sushi', 'chestnuts_ch', 'sauce_soya', 'balsamic_salad_dressing',
+         'pasta_twist', 'bolognaise_sauce', 'leek', 'fajita_bread_only',
+         'potato_gnocchi', 'rice_noodles_vermicelli', 'bread_whole_wheat',
+         'onion', 'garlic', 'hummus', 'pizza_with_vegetables_baked', 'beer',
+         'glucose_drink_50g', 'ratatouille', 'peanut', 'cauliflower',
+         'green_olives', 'bread_pita', 'pasta_wholemeal', 'sauce_pesto',
+         'couscous', 'sauce', 'bread_toast', 'water_with_lemon_juice',
+         'espresso', 'egg_scrambled', 'juice_orange', 'braided_white_loaf_ch',
+         'emmental_cheese_ch',
+         'hazelnut_chocolate_spread_nutella_ovomaltine_caotina', 'tomme_ch',
+         'hazelnut', 'peach', 'figs',
+         'mashed_potatoes_prepared_with_full_fat_milk_with_butter', 'pumpkin',
+         'swiss_chard', 'red_cabbage_raw', 'spinach_raw',
+         'chicken_curry_cream_coconut_milk_curry_spices_paste',
+         'crunch_muesli', 'biscuit', 'meatloaf_ch', 'fresh_cheese_n_s',
+         'honey', 'vegetable_mix_peas_and_carrots', 'parsley', 'brownie',
+         'ice_cream_n_s', 'salad_dressing', 'dried_meat_n_s', 'chicken_breast',
+         'mixed_salad_chopped_without_sauce', 'feta', 'praline_n_s', 'walnut',
+         'potato_salad', 'kolhrabi', 'alfa_sprouts', 'brussel_sprouts',
+         'gruyere_ch', 'bulgur', 'grapes', 'chocolate_egg_small', 'cappuccino',
+         'crisp_bread', 'bread_black', 'rosti_n_s', 'mango', 'muesli_dry',
+         'spinach', 'fish_n_s', 'risotto', 'crisps_ch', 'pork_n_s',
+         'pomegranate', 'sweet_corn', 'flakes', 'greek_salad', 'sesame_seeds',
+         'bouillon', 'baked_potato', 'fennel', 'meat_n_s', 'croutons',
+         'bell_pepper_red_stewed', 'nuts', 'breadcrumbs_unspiced', 'fondue',
+         'sauce_mushroom', 'strawberries', 'pie_plum_baked_with_cake_dough',
+         'potatoes_au_gratin_dauphinois_prepared', 'capers',
+         'bread_wholemeal_toast', 'red_radish', 'fruit_tart', 'beans_kidney',
+         'sauerkraut', 'mustard', 'country_fries', 'ketchup',
+         'pasta_linguini_parpadelle_tagliatelle',
+         'chicken_cut_into_stripes_only_meat', 'cookies', 'sun_dried_tomatoe',
+         'bread_ticino_ch', 'semi_hard_cheese',
+         'porridge_prepared_with_partially_skimmed_milk', 'juice',
+         'chocolate_milk', 'bread_fruit', 'corn', 'dates', 'pistachio',
+         'cream_cheese_n_s', 'bread_rye', 'witloof_chicory',
+         'goat_cheese_soft', 'grapefruit_pomelo', 'blue_mould_cheese',
+         'guacamole', 'tofu', 'cordon_bleu', 'quinoa', 'kefir_drink',
+         'salad_rocket', 'pizza_with_ham_with_mushrooms_baked', 'fruit_coulis',
+         'plums', 'pizza_with_ham_baked', 'pineapple', 'seeds_n_s', 'focaccia',
+         'mixed_milk_beverage', 'coleslaw_chopped_without_sauce',
+         'sweet_potato', 'chicken_leg', 'croissant', 'cheesecake',
+         'sauce_cocktail', 'croissant_with_chocolate_filling', 'pumpkin_seeds',
+         'artichoke', 'soft_drink_with_a_taste', 'apple_pie',
+         'white_bread_with_butter_eggs_and_milk', 'savoury_pastry_stick',
+         'tuna_in_oil_drained', 'meat_terrine_pate', 'falafel_balls',
+         'berries_n_s', 'latte_macchiato',
+         'sugar_melon_galia_honeydew_cantaloupe', 'mixed_seeds_n_s',
+         'oil_vinegar_salad_dressing', 'celeriac', 'chocolate_mousse', 'lemon',
+         'chocolate_cookies', 'birchermuesli_prepared_no_sugar_added',
+         'muffin', 'pine_nuts', 'french_pizza_from_alsace_baked',
+         'chocolate_n_s', 'grits_polenta_maize_flour', 'wine_rose',
+         'cola_based_drink', 'raspberries', 'roll_with_pieces_of_chocolate',
+         'cake_lemon', 'rice_wild', 'gluten_free_bread', 'pearl_onion',
+         'tzatziki', 'ham_croissant_ch', 'corn_crisps',
+         'lentils_green_du_puy_du_berry', 'rice_whole_grain', 'cervelat_ch',
+         'aperitif_with_alcohol_n_s_aperol_spritz', 'peas', 'tiramisu',
+         'apricots', 'lasagne_meat_prepared', 'brioche',
+         'vegetable_au_gratin_baked', 'basil', 'butter_spread_puree_almond',
+         'pie_apricot', 'rusk_wholemeal', 'pasta_in_conch_form',
+         'pasta_in_butterfly_form_farfalle', 'damson_plum', 'shoots_n_s',
+         'coconut', 'banana_cake', 'sauce_curry', 'watermelon_fresh',
+         'white_asparagus', 'cherries', 'nectarine')),
+    test=dict(
+        type='CocoDataset',
+        ann_file=
+        '/home/nick/segmentation/mmdetection/data/test/annotations.json',
+        img_prefix='/home/nick/segmentation/mmdetection/data/test/images',
+        pipeline=[
+            dict(type='LoadImageFromFile'),
+            dict(
+                type='MultiScaleFlipAug',
+                img_scale=(1333, 800),
+                flip=False,
+                transforms=[
+                    dict(type='Resize', keep_ratio=True),
+                    dict(type='RandomFlip'),
+                    dict(
+                        type='Normalize',
+                        mean=[123.675, 116.28, 103.53],
+                        std=[58.395, 57.12, 57.375],
+                        to_rgb=True),
+                    dict(type='Pad', size_divisor=32),
+                    dict(type='ImageToTensor', keys=['img']),
+                    dict(type='Collect', keys=['img'])
+                ])
+        ],
+        classes=
+        ('beetroot-steamed-without-addition-of-salt', 'bread_wholemeal', 'jam',
+         'water', 'bread', 'banana', 'soft_cheese', 'ham_raw', 'hard_cheese',
+         'cottage_cheese', 'coffee', 'fruit_mixed', 'pancake', 'tea',
+         'salmon_smoked', 'avocado', 'spring_onion_scallion',
+         'ristretto_with_caffeine', 'ham_n_s', 'egg', 'bacon',
+         'chips_french_fries', 'juice_apple', 'chicken', 'tomato', 'broccoli',
+         'shrimp_prawn', 'carrot', 'chickpeas', 'french_salad_dressing',
+         'pasta_hornli_ch', 'sauce_cream', 'pasta_n_s', 'tomato_sauce',
+         'cheese_n_s', 'pear', 'cashew_nut', 'almonds', 'lentil_n_s',
+         'mixed_vegetables', 'peanut_butter', 'apple', 'blueberries',
+         'cucumber', 'yogurt', 'butter', 'mayonnaise', 'soup', 'wine_red',
+         'wine_white', 'green_bean_steamed_without_addition_of_salt',
+         'sausage', 'pizza_margherita_baked', 'salami_ch', 'mushroom',
+         'tart_n_s', 'rice', 'white_coffee', 'sunflower_seeds',
+         'bell_pepper_red_raw', 'zucchini', 'asparagus', 'tartar_sauce',
+         'lye_pretzel_soft', 'cucumber_pickled_ch', 'curry_vegetarian',
+         'soup_of_lentils_dahl_dhal', 'salmon',
+         'salt_cake_ch_vegetables_filled', 'orange', 'pasta_noodles',
+         'cream_double_cream_heavy_cream_45', 'cake_chocolate',
+         'pasta_spaghetti', 'black_olives', 'parmesan', 'spaetzle',
+         'salad_lambs_ear', 'salad_leaf_salad_green', 'potato',
+         'white_cabbage', 'halloumi', 'beetroot_raw', 'bread_grain',
+         'applesauce', 'cheese_for_raclette_ch', 'bread_white',
+         'curds_natural', 'quiche', 'beef_n_s',
+         'taboule_prepared_with_couscous', 'aubergine_eggplant', 'mozzarella',
+         'pasta_penne', 'lasagne_vegetable_prepared', 'mandarine', 'kiwi',
+         'french_beans', 'spring_roll_fried',
+         'caprese_salad_tomato_mozzarella', 'leaf_spinach',
+         'roll_of_half_white_or_white_flour_with_large_void',
+         'omelette_with_flour_thick_crepe_plain', 'tuna', 'dark_chocolate',
+         'sauce_savoury_n_s', 'raisins_dried',
+         'ice_tea_on_black_tea_basis', 'kaki', 'smoothie',
+         'crepe_with_flour_plain', 'nuggets', 'chili_con_carne_prepared',
+         'veggie_burger', 'chinese_cabbage', 'hamburger', 'soup_pumpkin',
+         'sushi', 'chestnuts_ch', 'sauce_soya', 'balsamic_salad_dressing',
+         'pasta_twist', 'bolognaise_sauce', 'leek', 'fajita_bread_only',
+         'potato_gnocchi', 'rice_noodles_vermicelli', 'bread_whole_wheat',
+         'onion', 'garlic', 'hummus', 'pizza_with_vegetables_baked', 'beer',
+         'glucose_drink_50g', 'ratatouille', 'peanut', 'cauliflower',
+         'green_olives', 'bread_pita', 'pasta_wholemeal', 'sauce_pesto',
+         'couscous', 'sauce', 'bread_toast', 'water_with_lemon_juice',
+         'espresso', 'egg_scrambled', 'juice_orange', 'braided_white_loaf_ch',
+         'emmental_cheese_ch',
+         'hazelnut_chocolate_spread_nutella_ovomaltine_caotina', 'tomme_ch',
+         'hazelnut', 'peach', 'figs',
+         'mashed_potatoes_prepared_with_full_fat_milk_with_butter', 'pumpkin',
+         'swiss_chard', 'red_cabbage_raw', 'spinach_raw',
+         'chicken_curry_cream_coconut_milk_curry_spices_paste',
+         'crunch_muesli', 'biscuit', 'meatloaf_ch', 'fresh_cheese_n_s',
+         'honey', 'vegetable_mix_peas_and_carrots', 'parsley', 'brownie',
+         'ice_cream_n_s', 'salad_dressing', 'dried_meat_n_s', 'chicken_breast',
+         'mixed_salad_chopped_without_sauce', 'feta', 'praline_n_s', 'walnut',
+         'potato_salad', 'kolhrabi', 'alfa_sprouts', 'brussel_sprouts',
+         'gruyere_ch', 'bulgur', 'grapes', 'chocolate_egg_small', 'cappuccino',
+         'crisp_bread', 'bread_black', 'rosti_n_s', 'mango', 'muesli_dry',
+         'spinach', 'fish_n_s', 'risotto', 'crisps_ch', 'pork_n_s',
+         'pomegranate', 'sweet_corn', 'flakes', 'greek_salad', 'sesame_seeds',
+         'bouillon', 'baked_potato', 'fennel', 'meat_n_s', 'croutons',
+         'bell_pepper_red_stewed', 'nuts', 'breadcrumbs_unspiced', 'fondue',
+         'sauce_mushroom', 'strawberries', 'pie_plum_baked_with_cake_dough',
+         'potatoes_au_gratin_dauphinois_prepared', 'capers',
+         'bread_wholemeal_toast', 'red_radish', 'fruit_tart', 'beans_kidney',
+         'sauerkraut', 'mustard', 'country_fries', 'ketchup',
+         'pasta_linguini_parpadelle_tagliatelle',
+         'chicken_cut_into_stripes_only_meat', 'cookies', 'sun_dried_tomatoe',
+         'bread_ticino_ch', 'semi_hard_cheese',
+         'porridge_prepared_with_partially_skimmed_milk', 'juice',
+         'chocolate_milk', 'bread_fruit', 'corn', 'dates', 'pistachio',
+         'cream_cheese_n_s', 'bread_rye', 'witloof_chicory',
+         'goat_cheese_soft', 'grapefruit_pomelo', 'blue_mould_cheese',
+         'guacamole', 'tofu', 'cordon_bleu', 'quinoa', 'kefir_drink',
+         'salad_rocket', 'pizza_with_ham_with_mushrooms_baked', 'fruit_coulis',
+         'plums', 'pizza_with_ham_baked', 'pineapple', 'seeds_n_s', 'focaccia',
+         'mixed_milk_beverage', 'coleslaw_chopped_without_sauce',
+         'sweet_potato', 'chicken_leg', 'croissant', 'cheesecake',
+         'sauce_cocktail', 'croissant_with_chocolate_filling', 'pumpkin_seeds',
+         'artichoke', 'soft_drink_with_a_taste', 'apple_pie',
+         'white_bread_with_butter_eggs_and_milk', 'savoury_pastry_stick',
+         'tuna_in_oil_drained', 'meat_terrine_pate', 'falafel_balls',
+         'berries_n_s', 'latte_macchiato',
+         'sugar_melon_galia_honeydew_cantaloupe', 'mixed_seeds_n_s',
+         'oil_vinegar_salad_dressing', 'celeriac', 'chocolate_mousse', 'lemon',
+         'chocolate_cookies', 'birchermuesli_prepared_no_sugar_added',
+         'muffin', 'pine_nuts', 'french_pizza_from_alsace_baked',
+         'chocolate_n_s', 'grits_polenta_maize_flour', 'wine_rose',
+         'cola_based_drink', 'raspberries', 'roll_with_pieces_of_chocolate',
+         'cake_lemon', 'rice_wild', 'gluten_free_bread', 'pearl_onion',
+         'tzatziki', 'ham_croissant_ch', 'corn_crisps',
+         'lentils_green_du_puy_du_berry', 'rice_whole_grain', 'cervelat_ch',
+         'aperitif_with_alcohol_n_s_aperol_spritz', 'peas', 'tiramisu',
+         'apricots', 'lasagne_meat_prepared', 'brioche',
+         'vegetable_au_gratin_baked', 'basil', 'butter_spread_puree_almond',
+         'pie_apricot', 'rusk_wholemeal', 'pasta_in_conch_form',
+         'pasta_in_butterfly_form_farfalle', 'damson_plum', 'shoots_n_s',
+         'coconut', 'banana_cake', 'sauce_curry', 'watermelon_fresh',
+         'white_asparagus', 'cherries', 'nectarine')))
+evaluation = dict(interval=1, metric=['segm'])
+optimizer = dict(
+    type='AdamW',
+    lr=2e-05,
+    weight_decay=0.0001,
+    paramwise_cfg=dict(
+        custom_keys=dict(
+            absolute_pos_embed=dict(decay_mult=0.0),
+            relative_position_bias_table=dict(decay_mult=0.0),
+            norm=dict(decay_mult=0.0))))
+optimizer_config = dict(
+    grad_clip=dict(max_norm=1, norm_type=2),
+    type='DistOptimizerHook',
+    update_interval=1,
+    coalesce=True,
+    bucket_size_mb=-1,
+    use_fp16=False)
+lr_config = dict(
+    policy='step',
+    warmup='linear',
+    warmup_iters=500,
+    warmup_ratio=0.001,
+    step=[14, 18])
+runner = dict(type='EpochBasedRunner', max_epochs=20)
+checkpoint_config = dict(interval=1)
+log_config = dict(
+    interval=1,
+    hooks=[dict(type='TextLoggerHook'),
+           dict(type='TensorboardLoggerHook')])
+custom_hooks = [
+    dict(type='NumClassCheckHook'),
+    dict(type='EMAHook', interval=1, priority='HIGH')
+]
+dist_params = dict(backend='nccl')
+log_level = 'INFO'
+load_from = '/home/nick/segmentation/mmdetection/checkpoints/queryinst_swin_large_patch4_window7_fpn_300_queries-832c5813.pth'
+resume_from = None
+workflow = [('train', 1)]
+num_stages = 6
+num_proposals = 300
+model = dict(
+    type='QueryInst',
+    pretrained=None,
+    backbone=dict(
+        type='SwinTransformer',
+        embed_dim=192,
+        depths=[2, 2, 18, 2],
+        num_heads=[6, 12, 24, 48],
+        window_size=7,
+        mlp_ratio=4.0,
+        qkv_bias=True,
+        qk_scale=None,
+        drop_rate=0.0,
+        attn_drop_rate=0.0,
+        drop_path_rate=0.3,
+        ape=False,
+        patch_norm=True,
+        out_indices=(0, 1, 2, 3),
+        use_checkpoint=False),
+    neck=dict(
+        type='FPN',
+        in_channels=[192, 384, 768, 1536],
+        out_channels=256,
+        start_level=0,
+        add_extra_convs='on_input',
+        num_outs=4),
+    rpn_head=dict(
+        type='EmbeddingRPNHead',
+        num_proposals=300,
+        proposal_feature_channel=256),
+    roi_head=dict(
+        type='QueryRoIHead',
+        num_stages=6,
+        stage_loss_weights=[1, 1, 1, 1, 1, 1],
+        proposal_feature_channel=256,
+        bbox_roi_extractor=dict(
+            type='SingleRoIExtractor',
+            roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=2),
+            out_channels=256,
+            featmap_strides=[4, 8, 16, 32]),
+        mask_roi_extractor=dict(
+            type='SingleRoIExtractor',
+            roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=2),
+            out_channels=256,
+            featmap_strides=[4, 8, 16, 32]),
+        bbox_head=[
+            dict(
+                type='DIIHead',
+                num_classes=323,
+                num_ffn_fcs=2,
+                num_heads=8,
+                num_cls_fcs=1,
+                num_reg_fcs=3,
+                feedforward_channels=2048,
+                in_channels=256,
+                dropout=0.0,
+                ffn_act_cfg=dict(type='ReLU', inplace=True),
+                dynamic_conv_cfg=dict(
+                    type='DynamicConv',
+                    in_channels=256,
+                    feat_channels=64,
+                    out_channels=256,
+                    input_feat_shape=7,
+                    with_proj=True,
+                    act_cfg=dict(type='ReLU', inplace=True),
+                    norm_cfg=dict(type='LN')),
+                loss_bbox=dict(type='L1Loss', loss_weight=5.0),
+                loss_iou=dict(type='GIoULoss', loss_weight=2.0),
+                loss_cls=dict(
+                    type='FocalLoss',
+                    use_sigmoid=True,
+                    gamma=2.0,
+                    alpha=0.25,
+                    loss_weight=2.0),
+                bbox_coder=dict(
+                    type='DeltaXYWHBBoxCoder',
+                    clip_border=False,
+                    target_means=[0.0, 0.0, 0.0, 0.0],
+                    target_stds=[0.5, 0.5, 1.0, 1.0])),
+            dict(
+                type='DIIHead',
+                num_classes=323,
+                num_ffn_fcs=2,
+                num_heads=8,
+                num_cls_fcs=1,
+                num_reg_fcs=3,
+                feedforward_channels=2048,
+                in_channels=256,
+                dropout=0.0,
+                ffn_act_cfg=dict(type='ReLU', inplace=True),
+                dynamic_conv_cfg=dict(
+                    type='DynamicConv',
+                    in_channels=256,
+                    feat_channels=64,
+                    out_channels=256,
+                    input_feat_shape=7,
+                    with_proj=True,
+                    act_cfg=dict(type='ReLU', inplace=True),
+                    norm_cfg=dict(type='LN')),
+                loss_bbox=dict(type='L1Loss', loss_weight=5.0),
+                loss_iou=dict(type='GIoULoss', loss_weight=2.0),
+                loss_cls=dict(
+                    type='FocalLoss',
+                    use_sigmoid=True,
+                    gamma=2.0,
+                    alpha=0.25,
+                    loss_weight=2.0),
+                bbox_coder=dict(
+                    type='DeltaXYWHBBoxCoder',
+                    clip_border=False,
+                    target_means=[0.0, 0.0, 0.0, 0.0],
+                    target_stds=[0.5, 0.5, 1.0, 1.0])),
+            dict(
+                type='DIIHead',
+                num_classes=323,
+                num_ffn_fcs=2,
+                num_heads=8,
+                num_cls_fcs=1,
+                num_reg_fcs=3,
+                feedforward_channels=2048,
+                in_channels=256,
+                dropout=0.0,
+                ffn_act_cfg=dict(type='ReLU', inplace=True),
+                dynamic_conv_cfg=dict(
+                    type='DynamicConv',
+                    in_channels=256,
+                    feat_channels=64,
+                    out_channels=256,
+                    input_feat_shape=7,
+                    with_proj=True,
+                    act_cfg=dict(type='ReLU', inplace=True),
+                    norm_cfg=dict(type='LN')),
+                loss_bbox=dict(type='L1Loss', loss_weight=5.0),
+                loss_iou=dict(type='GIoULoss', loss_weight=2.0),
+                loss_cls=dict(
+                    type='FocalLoss',
+                    use_sigmoid=True,
+                    gamma=2.0,
+                    alpha=0.25,
+                    loss_weight=2.0),
+                bbox_coder=dict(
+                    type='DeltaXYWHBBoxCoder',
+                    clip_border=False,
+                    target_means=[0.0, 0.0, 0.0, 0.0],
+                    target_stds=[0.5, 0.5, 1.0, 1.0])),
+            dict(
+                type='DIIHead',
+                num_classes=323,
+                num_ffn_fcs=2,
+                num_heads=8,
+                num_cls_fcs=1,
+                num_reg_fcs=3,
+                feedforward_channels=2048,
+                in_channels=256,
+                dropout=0.0,
+                ffn_act_cfg=dict(type='ReLU', inplace=True),
+                dynamic_conv_cfg=dict(
+                    type='DynamicConv',
+                    in_channels=256,
+                    feat_channels=64,
+                    out_channels=256,
+                    input_feat_shape=7,
+                    with_proj=True,
+                    act_cfg=dict(type='ReLU', inplace=True),
+                    norm_cfg=dict(type='LN')),
+                loss_bbox=dict(type='L1Loss', loss_weight=5.0),
+                loss_iou=dict(type='GIoULoss', loss_weight=2.0),
+                loss_cls=dict(
+                    type='FocalLoss',
+                    use_sigmoid=True,
+                    gamma=2.0,
+                    alpha=0.25,
+                    loss_weight=2.0),
+                bbox_coder=dict(
+                    type='DeltaXYWHBBoxCoder',
+                    clip_border=False,
+                    target_means=[0.0, 0.0, 0.0, 0.0],
+                    target_stds=[0.5, 0.5, 1.0, 1.0])),
+            dict(
+                type='DIIHead',
+                num_classes=323,
+                num_ffn_fcs=2,
+                num_heads=8,
+                num_cls_fcs=1,
+                num_reg_fcs=3,
+                feedforward_channels=2048,
+                in_channels=256,
+                dropout=0.0,
+                ffn_act_cfg=dict(type='ReLU', inplace=True),
+                dynamic_conv_cfg=dict(
+                    type='DynamicConv',
+                    in_channels=256,
+                    feat_channels=64,
+                    out_channels=256,
+                    input_feat_shape=7,
+                    with_proj=True,
+                    act_cfg=dict(type='ReLU', inplace=True),
+                    norm_cfg=dict(type='LN')),
+                loss_bbox=dict(type='L1Loss', loss_weight=5.0),
+                loss_iou=dict(type='GIoULoss', loss_weight=2.0),
+                loss_cls=dict(
+                    type='FocalLoss',
+                    use_sigmoid=True,
+                    gamma=2.0,
+                    alpha=0.25,
+                    loss_weight=2.0),
+                bbox_coder=dict(
+                    type='DeltaXYWHBBoxCoder',
+                    clip_border=False,
+                    target_means=[0.0, 0.0, 0.0, 0.0],
+                    target_stds=[0.5, 0.5, 1.0, 1.0])),
+            dict(
+                type='DIIHead',
+                num_classes=323,
+                num_ffn_fcs=2,
+                num_heads=8,
+                num_cls_fcs=1,
+                num_reg_fcs=3,
+                feedforward_channels=2048,
+                in_channels=256,
+                dropout=0.0,
+                ffn_act_cfg=dict(type='ReLU', inplace=True),
+                dynamic_conv_cfg=dict(
+                    type='DynamicConv',
+                    in_channels=256,
+                    feat_channels=64,
+                    out_channels=256,
+                    input_feat_shape=7,
+                    with_proj=True,
+                    act_cfg=dict(type='ReLU', inplace=True),
+                    norm_cfg=dict(type='LN')),
+                loss_bbox=dict(type='L1Loss', loss_weight=5.0),
+                loss_iou=dict(type='GIoULoss', loss_weight=2.0),
+                loss_cls=dict(
+                    type='FocalLoss',
+                    use_sigmoid=True,
+                    gamma=2.0,
+                    alpha=0.25,
+                    loss_weight=2.0),
+                bbox_coder=dict(
+                    type='DeltaXYWHBBoxCoder',
+                    clip_border=False,
+                    target_means=[0.0, 0.0, 0.0, 0.0],
+                    target_stds=[0.5, 0.5, 1.0, 1.0]))
+        ],
+        mask_head=[
+            dict(
+                type='DynamicMaskHead',
+                dynamic_conv_cfg=dict(
+                    type='DynamicConv',
+                    in_channels=256,
+                    feat_channels=64,
+                    out_channels=256,
+                    input_feat_shape=14,
+                    with_proj=False,
+                    act_cfg=dict(type='ReLU', inplace=True),
+                    norm_cfg=dict(type='LN')),
+                dropout=0.0,
+                num_convs=4,
+                roi_feat_size=14,
+                in_channels=256,
+                conv_kernel_size=3,
+                conv_out_channels=256,
+                class_agnostic=False,
+                norm_cfg=dict(type='BN'),
+                upsample_cfg=dict(type='deconv', scale_factor=2),
+                loss_dice=dict(type='DiceLoss', loss_weight=8.0),
+                num_classes=323),
+            dict(
+                type='DynamicMaskHead',
+                dynamic_conv_cfg=dict(
+                    type='DynamicConv',
+                    in_channels=256,
+                    feat_channels=64,
+                    out_channels=256,
+                    input_feat_shape=14,
+                    with_proj=False,
+                    act_cfg=dict(type='ReLU', inplace=True),
+                    norm_cfg=dict(type='LN')),
+                dropout=0.0,
+                num_convs=4,
+                roi_feat_size=14,
+                in_channels=256,
+                conv_kernel_size=3,
+                conv_out_channels=256,
+                class_agnostic=False,
+                norm_cfg=dict(type='BN'),
+                upsample_cfg=dict(type='deconv', scale_factor=2),
+                loss_dice=dict(type='DiceLoss', loss_weight=8.0),
+                num_classes=323),
+            dict(
+                type='DynamicMaskHead',
+                dynamic_conv_cfg=dict(
+                    type='DynamicConv',
+                    in_channels=256,
+                    feat_channels=64,
+                    out_channels=256,
+                    input_feat_shape=14,
+                    with_proj=False,
+                    act_cfg=dict(type='ReLU', inplace=True),
+                    norm_cfg=dict(type='LN')),
+                dropout=0.0,
+                num_convs=4,
+                roi_feat_size=14,
+                in_channels=256,
+                conv_kernel_size=3,
+                conv_out_channels=256,
+                class_agnostic=False,
+                norm_cfg=dict(type='BN'),
+                upsample_cfg=dict(type='deconv', scale_factor=2),
+                loss_dice=dict(type='DiceLoss', loss_weight=8.0),
+                num_classes=323),
+            dict(
+                type='DynamicMaskHead',
+                dynamic_conv_cfg=dict(
+                    type='DynamicConv',
+                    in_channels=256,
+                    feat_channels=64,
+                    out_channels=256,
+                    input_feat_shape=14,
+                    with_proj=False,
+                    act_cfg=dict(type='ReLU', inplace=True),
+                    norm_cfg=dict(type='LN')),
+                dropout=0.0,
+                num_convs=4,
+                roi_feat_size=14,
+                in_channels=256,
+                conv_kernel_size=3,
+                conv_out_channels=256,
+                class_agnostic=False,
+                norm_cfg=dict(type='BN'),
+                upsample_cfg=dict(type='deconv', scale_factor=2),
+                loss_dice=dict(type='DiceLoss', loss_weight=8.0),
+                num_classes=323),
+            dict(
+                type='DynamicMaskHead',
+                dynamic_conv_cfg=dict(
+                    type='DynamicConv',
+                    in_channels=256,
+                    feat_channels=64,
+                    out_channels=256,
+                    input_feat_shape=14,
+                    with_proj=False,
+                    act_cfg=dict(type='ReLU', inplace=True),
+                    norm_cfg=dict(type='LN')),
+                dropout=0.0,
+                num_convs=4,
+                roi_feat_size=14,
+                in_channels=256,
+                conv_kernel_size=3,
+                conv_out_channels=256,
+                class_agnostic=False,
+                norm_cfg=dict(type='BN'),
+                upsample_cfg=dict(type='deconv', scale_factor=2),
+                loss_dice=dict(type='DiceLoss', loss_weight=8.0),
+                num_classes=323),
+            dict(
+                type='DynamicMaskHead',
+                dynamic_conv_cfg=dict(
+                    type='DynamicConv',
+                    in_channels=256,
+                    feat_channels=64,
+                    out_channels=256,
+                    input_feat_shape=14,
+                    with_proj=False,
+                    act_cfg=dict(type='ReLU', inplace=True),
+                    norm_cfg=dict(type='LN')),
+                dropout=0.0,
+                num_convs=4,
+                roi_feat_size=14,
+                in_channels=256,
+                conv_kernel_size=3,
+                conv_out_channels=256,
+                class_agnostic=False,
+                norm_cfg=dict(type='BN'),
+                upsample_cfg=dict(type='deconv', scale_factor=2),
+                loss_dice=dict(type='DiceLoss', loss_weight=8.0),
+                num_classes=323)
+        ]),
+    train_cfg=dict(
+        rpn=None,
+        rcnn=[
+            dict(
+                assigner=dict(
+                    type='HungarianAssigner',
+                    cls_cost=dict(type='FocalLossCost', weight=2.0),
+                    reg_cost=dict(type='BBoxL1Cost', weight=5.0),
+                    iou_cost=dict(type='IoUCost', iou_mode='giou',
+                                  weight=2.0)),
+                sampler=dict(type='PseudoSampler'),
+                pos_weight=1,
+                mask_size=28,
+                debug=False),
+            dict(
+                assigner=dict(
+                    type='HungarianAssigner',
+                    cls_cost=dict(type='FocalLossCost', weight=2.0),
+                    reg_cost=dict(type='BBoxL1Cost', weight=5.0),
+                    iou_cost=dict(type='IoUCost', iou_mode='giou',
+                                  weight=2.0)),
+                sampler=dict(type='PseudoSampler'),
+                pos_weight=1,
+                mask_size=28,
+                debug=False),
+            dict(
+                assigner=dict(
+                    type='HungarianAssigner',
+                    cls_cost=dict(type='FocalLossCost', weight=2.0),
+                    reg_cost=dict(type='BBoxL1Cost', weight=5.0),
+                    iou_cost=dict(type='IoUCost', iou_mode='giou',
+                                  weight=2.0)),
+                sampler=dict(type='PseudoSampler'),
+                pos_weight=1,
+                mask_size=28,
+                debug=False),
+            dict(
+                assigner=dict(
+                    type='HungarianAssigner',
+                    cls_cost=dict(type='FocalLossCost', weight=2.0),
+                    reg_cost=dict(type='BBoxL1Cost', weight=5.0),
+                    iou_cost=dict(type='IoUCost', iou_mode='giou',
+                                  weight=2.0)),
+                sampler=dict(type='PseudoSampler'),
+                pos_weight=1,
+                mask_size=28,
+                debug=False),
+            dict(
+                assigner=dict(
+                    type='HungarianAssigner',
+                    cls_cost=dict(type='FocalLossCost', weight=2.0),
+                    reg_cost=dict(type='BBoxL1Cost', weight=5.0),
+                    iou_cost=dict(type='IoUCost', iou_mode='giou',
+                                  weight=2.0)),
+                sampler=dict(type='PseudoSampler'),
+                pos_weight=1,
+                mask_size=28,
+                debug=False),
+            dict(
+                assigner=dict(
+                    type='HungarianAssigner',
+                    cls_cost=dict(type='FocalLossCost', weight=2.0),
+                    reg_cost=dict(type='BBoxL1Cost', weight=5.0),
+                    iou_cost=dict(type='IoUCost', iou_mode='giou',
+                                  weight=2.0)),
+                sampler=dict(type='PseudoSampler'),
+                pos_weight=1,
+                mask_size=28,
+                debug=False)
+        ]),
+    test_cfg=dict(rpn=None, rcnn=dict(max_per_img=100, mask_thr_binary=0.5, nms=dict(type='nms', iou_threshold=0.7))))
+
+total_epochs = 20
+min_values = (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800)
+fp16 = None
+seed = 666
+gpu_ids = [0]
+classes = (
+    'beetroot-steamed-without-addition-of-salt', 'bread_wholemeal', 'jam',
+    'water', 'bread', 'banana', 'soft_cheese', 'ham_raw', 'hard_cheese',
+    'cottage_cheese', 'coffee', 'fruit_mixed', 'pancake', 'tea',
+    'salmon_smoked', 'avocado', 'spring_onion_scallion',
+    'ristretto_with_caffeine', 'ham_n_s', 'egg', 'bacon', 'chips_french_fries',
+    'juice_apple', 'chicken', 'tomato', 'broccoli', 'shrimp_prawn', 'carrot',
+    'chickpeas', 'french_salad_dressing', 'pasta_hornli_ch', 'sauce_cream',
+    'pasta_n_s', 'tomato_sauce', 'cheese_n_s', 'pear', 'cashew_nut', 'almonds',
+    'lentil_n_s', 'mixed_vegetables', 'peanut_butter', 'apple', 'blueberries',
+    'cucumber', 'yogurt', 'butter', 'mayonnaise', 'soup', 'wine_red',
+    'wine_white', 'green_bean_steamed_without_addition_of_salt', 'sausage',
+    'pizza_margherita_baked', 'salami_ch', 'mushroom', 'tart_n_s', 'rice',
+    'white_coffee', 'sunflower_seeds', 'bell_pepper_red_raw', 'zucchini',
+    'asparagus', 'tartar_sauce', 'lye_pretzel_soft', 'cucumber_pickled_ch',
+    'curry_vegetarian', 'soup_of_lentils_dahl_dhal', 'salmon',
+    'salt_cake_ch_vegetables_filled', 'orange', 'pasta_noodles',
+    'cream_double_cream_heavy_cream_45', 'cake_chocolate', 'pasta_spaghetti',
+    'black_olives', 'parmesan', 'spaetzle', 'salad_lambs_ear',
+    'salad_leaf_salad_green', 'potato', 'white_cabbage', 'halloumi',
+    'beetroot_raw', 'bread_grain', 'applesauce', 'cheese_for_raclette_ch',
+    'bread_white', 'curds_natural', 'quiche', 'beef_n_s',
+    'taboule_prepared_with_couscous', 'aubergine_eggplant', 'mozzarella',
+    'pasta_penne', 'lasagne_vegetable_prepared', 'mandarine', 'kiwi',
+    'french_beans', 'spring_roll_fried', 'caprese_salad_tomato_mozzarella',
+    'leaf_spinach', 'roll_of_half_white_or_white_flour_with_large_void',
+    'omelette_with_flour_thick_crepe_plain', 'tuna', 'dark_chocolate',
+    'sauce_savoury_n_s', 'raisins_dried', 'ice_tea_on_black_tea_basis', 'kaki',
+    'smoothie', 'crepe_with_flour_plain', 'nuggets',
+    'chili_con_carne_prepared', 'veggie_burger', 'chinese_cabbage',
+    'hamburger', 'soup_pumpkin', 'sushi', 'chestnuts_ch', 'sauce_soya',
+    'balsamic_salad_dressing', 'pasta_twist', 'bolognaise_sauce', 'leek',
+    'fajita_bread_only', 'potato_gnocchi', 'rice_noodles_vermicelli',
+    'bread_whole_wheat', 'onion', 'garlic', 'hummus',
+    'pizza_with_vegetables_baked', 'beer', 'glucose_drink_50g', 'ratatouille',
+    'peanut', 'cauliflower', 'green_olives', 'bread_pita', 'pasta_wholemeal',
+    'sauce_pesto', 'couscous', 'sauce', 'bread_toast',
+    'water_with_lemon_juice', 'espresso', 'egg_scrambled', 'juice_orange',
+    'braided_white_loaf_ch', 'emmental_cheese_ch',
+    'hazelnut_chocolate_spread_nutella_ovomaltine_caotina', 'tomme_ch',
+    'hazelnut', 'peach', 'figs',
+    'mashed_potatoes_prepared_with_full_fat_milk_with_butter', 'pumpkin',
+    'swiss_chard', 'red_cabbage_raw', 'spinach_raw',
+    'chicken_curry_cream_coconut_milk_curry_spices_paste', 'crunch_muesli',
+    'biscuit', 'meatloaf_ch', 'fresh_cheese_n_s', 'honey',
+    'vegetable_mix_peas_and_carrots', 'parsley', 'brownie', 'ice_cream_n_s',
+    'salad_dressing', 'dried_meat_n_s', 'chicken_breast',
+    'mixed_salad_chopped_without_sauce', 'feta', 'praline_n_s', 'walnut',
+    'potato_salad', 'kolhrabi', 'alfa_sprouts', 'brussel_sprouts',
+    'gruyere_ch', 'bulgur', 'grapes', 'chocolate_egg_small', 'cappuccino',
+    'crisp_bread', 'bread_black', 'rosti_n_s', 'mango', 'muesli_dry',
+    'spinach', 'fish_n_s', 'risotto', 'crisps_ch', 'pork_n_s', 'pomegranate',
+    'sweet_corn', 'flakes', 'greek_salad', 'sesame_seeds', 'bouillon',
+    'baked_potato', 'fennel', 'meat_n_s', 'croutons', 'bell_pepper_red_stewed',
+    'nuts', 'breadcrumbs_unspiced', 'fondue', 'sauce_mushroom', 'strawberries',
+    'pie_plum_baked_with_cake_dough', 'potatoes_au_gratin_dauphinois_prepared',
+    'capers', 'bread_wholemeal_toast', 'red_radish', 'fruit_tart',
+    'beans_kidney', 'sauerkraut', 'mustard', 'country_fries', 'ketchup',
+    'pasta_linguini_parpadelle_tagliatelle',
+    'chicken_cut_into_stripes_only_meat', 'cookies', 'sun_dried_tomatoe',
+    'bread_ticino_ch', 'semi_hard_cheese',
+    'porridge_prepared_with_partially_skimmed_milk', 'juice', 'chocolate_milk',
+    'bread_fruit', 'corn', 'dates', 'pistachio', 'cream_cheese_n_s',
+    'bread_rye', 'witloof_chicory', 'goat_cheese_soft', 'grapefruit_pomelo',
+    'blue_mould_cheese', 'guacamole', 'tofu', 'cordon_bleu', 'quinoa',
+    'kefir_drink', 'salad_rocket', 'pizza_with_ham_with_mushrooms_baked',
+    'fruit_coulis', 'plums', 'pizza_with_ham_baked', 'pineapple', 'seeds_n_s',
+    'focaccia', 'mixed_milk_beverage', 'coleslaw_chopped_without_sauce',
+    'sweet_potato', 'chicken_leg', 'croissant', 'cheesecake', 'sauce_cocktail',
+    'croissant_with_chocolate_filling', 'pumpkin_seeds', 'artichoke',
+    'soft_drink_with_a_taste', 'apple_pie',
+    'white_bread_with_butter_eggs_and_milk', 'savoury_pastry_stick',
+    'tuna_in_oil_drained', 'meat_terrine_pate', 'falafel_balls', 'berries_n_s',
+    'latte_macchiato', 'sugar_melon_galia_honeydew_cantaloupe',
+    'mixed_seeds_n_s', 'oil_vinegar_salad_dressing', 'celeriac',
+    'chocolate_mousse', 'lemon', 'chocolate_cookies',
+    'birchermuesli_prepared_no_sugar_added', 'muffin', 'pine_nuts',
+    'french_pizza_from_alsace_baked', 'chocolate_n_s',
+    'grits_polenta_maize_flour', 'wine_rose', 'cola_based_drink',
+    'raspberries', 'roll_with_pieces_of_chocolate', 'cake_lemon', 'rice_wild',
+    'gluten_free_bread', 'pearl_onion', 'tzatziki', 'ham_croissant_ch',
+    'corn_crisps', 'lentils_green_du_puy_du_berry', 'rice_whole_grain',
+    'cervelat_ch', 'aperitif_with_alcohol_n_s_aperol_spritz', 'peas',
+    'tiramisu', 'apricots', 'lasagne_meat_prepared', 'brioche',
+    'vegetable_au_gratin_baked', 'basil', 'butter_spread_puree_almond',
+    'pie_apricot', 'rusk_wholemeal', 'pasta_in_conch_form',
+    'pasta_in_butterfly_form_farfalle', 'damson_plum', 'shoots_n_s', 'coconut',
+    'banana_cake', 'sauce_curry', 'watermelon_fresh', 'white_asparagus',
+    'cherries', 'nectarine')
+work_dir = './training_files/queryinst_20_2_2e-05_step_AdamW_2'
diff --git a/configs/queryinst_tta.py b/configs/queryinst_tta.py
index cf8d0ed..40e9701 100644
--- a/configs/queryinst_tta.py
+++ b/configs/queryinst_tta.py
@@ -1160,12 +1160,12 @@ model = dict(
                 mask_size=28,
                 debug=False)
         ]),
-    test_cfg=dict(rpn=None, rcnn=dict(max_per_img=300, mask_thr_binary=0.5, nms=dict(type='nms', iou_threshold=0.7))))
+    test_cfg=dict(rpn=None, rcnn=dict(max_per_img=100, mask_thr_binary=0.5, nms=dict(type='nms', iou_threshold=0.7))))
 total_epochs = 40
 min_values = (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800)
 fp16 = None
 seed = 666
-gpu_ids = [2]
+gpu_ids = [0]
 classes = (
     'bread-wholemeal', 'jam', 'water', 'bread-sourdough', 'banana',
     'soft-cheese', 'ham-raw', 'hard-cheese', 'cottage-cheese',
diff --git a/models/epoch_10_sh.pth b/models/epoch_10_sh.pth
deleted file mode 100644
index 21a8814..0000000
--- a/models/epoch_10_sh.pth
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:d55f7bbde3ed8f30c7d293cec4dc890a07712bce6275065c429192b060a5ef81
-size 1379804377
diff --git a/models/epoch_11_sh.pth b/models/epoch_11_sh.pth
deleted file mode 100644
index 80b73c8..0000000
--- a/models/epoch_11_sh.pth
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:1b3d9e57385d68044658cb72612f114ec4c9160f25e44159eff6fe5d3faf004b
-size 1379805487
diff --git a/models/epoch_12_sh.pth b/models/epoch_12_sh.pth
deleted file mode 100644
index 50c9cd7..0000000
--- a/models/epoch_12_sh.pth
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:5cd97f4834576eb44f01c279e106d6a28c32fac79bdc1244ceb90e12d77c7fb0
-size 1379805501
diff --git a/models/epoch_13_sh.pth b/models/epoch_13_sh.pth
deleted file mode 100644
index 85fcd1c..0000000
--- a/models/epoch_13_sh.pth
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:c10d98bcfdae7c0332974b244416825cda980905a55b79f8bb09af9b9df58b0c
-size 1379804886
diff --git a/models/epoch_18_sh.pth b/models/epoch_18_sh.pth
new file mode 100644
index 0000000..2fa9a21
--- /dev/null
+++ b/models/epoch_18_sh.pth
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:a0d39538a36b446a8008754d6ddc17b1d315a09d4b1ac6043c4f5c6ed5dab6c2
+size 1379804368
diff --git a/models/epoch_19_sh.pth b/models/epoch_19_sh.pth
deleted file mode 100644
index 258dd4d..0000000
--- a/models/epoch_19_sh.pth
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:016ed19527277af280ce19622b1941163b3d0d6a683c4309ce297ff67b59b0c6
-size 1379804729
diff --git a/models/epoch_20_sh.pth b/models/epoch_20_sh.pth
deleted file mode 100644
index 7cfb992..0000000
--- a/models/epoch_20_sh.pth
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:14684ca7dea0c643eb7550f9ca14c026548fbe9cb9d778b32887e0cd71adc510
-size 1379804836
diff --git a/models/epoch_8_sh.pth b/models/epoch_8_sh.pth
deleted file mode 100644
index 4faac1a..0000000
--- a/models/epoch_8_sh.pth
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:83df94a060022029c0dde99bc40a69c37ab3dcc604964dec86843d1a3b1290ca
-size 1379804368
diff --git a/models/epoch_9_sh.pth b/models/epoch_9_sh.pth
deleted file mode 100644
index 61d0fda..0000000
--- a/models/epoch_9_sh.pth
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:38d4f4e03b4682ae02b2b8488815605c92b41151ab0b7f45d2b9f0251fe194f4
-size 1379803984
-- 
GitLab