Commit 94e07ef9 authored by MasterScrat's avatar MasterScrat

Formatting

parent db0257ef
...@@ -25,7 +25,9 @@ You may need to install/update bazel: [Ubuntu guide](https://docs.bazel.build/ve ...@@ -25,7 +25,9 @@ You may need to install/update bazel: [Ubuntu guide](https://docs.bazel.build/ve
``` ```
pip install ray[rllib] pip install ray[rllib]
pip install tensorflow # or tensorflow-gpu pip install tensorflow
# with GPU support
# conda install -c anaconda tensorflow-gpu
pip install -r requirements.txt pip install -r requirements.txt
``` ```
......
...@@ -39,10 +39,16 @@ class FlatlandSparse(MultiAgentEnv): ...@@ -39,10 +39,16 @@ class FlatlandSparse(MultiAgentEnv):
schedule_generator = sparse_schedule_generator({float(k): float(v) schedule_generator = sparse_schedule_generator({float(k): float(v)
for k, v in self._config['speed_ratio_map'].items()}) for k, v in self._config['speed_ratio_map'].items()})
env = RailEnv(width=self._config['width'], height=self._config['height'], rail_generator=rail_generator, env = RailEnv(
schedule_generator=schedule_generator, number_of_agents=self._config['number_of_agents'], width=self._config['width'],
malfunction_generator_and_process_data=malfunction_from_params(stochastic_data), height=self._config['height'],
obs_builder_object=self._observation.builder(), remove_agents_at_target=False) rail_generator=rail_generator,
schedule_generator=schedule_generator,
number_of_agents=self._config['number_of_agents'],
malfunction_generator_and_process_data=malfunction_from_params(stochastic_data),
obs_builder_object=self._observation.builder(),
remove_agents_at_target=False
)
return env return env
def step(self, action_dict): def step(self, action_dict):
......
flatland-random-sparse-small-global-conv-ppo: flatland-random-sparse-small-global-conv-ppo:
run: PPO run: PPO
env: flatland_random_sparse_small env: flatland_random_sparse_small
stop: stop:
timesteps_total: 10000000 # 1e7 timesteps_total: 10000000 # 1e7
checkpoint_freq: 10 checkpoint_freq: 10
checkpoint_at_end: True checkpoint_at_end: True
keep_checkpoints_num: 5 keep_checkpoints_num: 5
checkpoint_score_attr: episode_reward_mean checkpoint_score_attr: episode_reward_mean
config: config:
clip_rewards: True clip_rewards: True
clip_param: 0.1 clip_param: 0.1
vf_clip_param: 500.0 vf_clip_param: 500.0
entropy_coeff: 0.01 entropy_coeff: 0.01
# effective batch_size: train_batch_size * num_agents_in_each_environment [5, 10] # effective batch_size: train_batch_size * num_agents_in_each_environment [5, 10]
# see https://github.com/ray-project/ray/issues/4628 # see https://github.com/ray-project/ray/issues/4628
train_batch_size: 1000 # 5000 train_batch_size: 1000 # 5000
rollout_fragment_length: 50 # 100 rollout_fragment_length: 50 # 100
sgd_minibatch_size: 100 # 500 sgd_minibatch_size: 100 # 500
num_sgd_iter: 10 num_sgd_iter: 10
num_workers: 7 num_workers: 7
num_envs_per_worker: 5 num_envs_per_worker: 5
batch_mode: truncate_episodes batch_mode: truncate_episodes
observation_filter: NoFilter observation_filter: NoFilter
vf_share_layers: True vf_share_layers: True
vf_loss_coeff: 0.5 vf_loss_coeff: 0.5
num_gpus: 1 num_gpus: 1
env_config: env_config:
min_seed: 1002 min_seed: 1002
max_seed: 213783 max_seed: 213783
min_test_seed: 0 min_test_seed: 0
max_test_seed: 100 max_test_seed: 100
reset_env_freq: 1 reset_env_freq: 1
observation: global observation: global
observation_config: observation_config:
max_width: 45 max_width: 45
max_height: 45 max_height: 45
regenerate_rail_on_reset: True regenerate_rail_on_reset: True
regenerate_schedule_on_reset: True regenerate_schedule_on_reset: True
render: False render: False
model: model:
custom_model: global_obs_model custom_model: global_obs_model
custom_options: custom_options:
architecture: impala architecture: impala
flatland-random-sparse-small-tree-fc-ppo: flatland-random-sparse-small-tree-fc-ppo:
run: PPO run: PPO
env: flatland_random_sparse_small env: flatland_random_sparse_small
stop: stop:
timesteps_total: 10000000 # 1e7 timesteps_total: 10000000 # 1e7
checkpoint_freq: 10 checkpoint_freq: 10
checkpoint_at_end: True checkpoint_at_end: True
keep_checkpoints_num: 5 keep_checkpoints_num: 5
checkpoint_score_attr: episode_reward_mean checkpoint_score_attr: episode_reward_mean
config: config:
clip_rewards: True clip_rewards: True
clip_param: 0.1 clip_param: 0.1
vf_clip_param: 500.0 vf_clip_param: 500.0
entropy_coeff: 0.01 entropy_coeff: 0.01
# effective batch_size: train_batch_size * num_agents_in_each_environment [5, 10] # effective batch_size: train_batch_size * num_agents_in_each_environment [5, 10]
# see https://github.com/ray-project/ray/issues/4628 # see https://github.com/ray-project/ray/issues/4628
train_batch_size: 1000 # 5000 train_batch_size: 1000 # 5000
rollout_fragment_length: 50 # 100 rollout_fragment_length: 50 # 100
sgd_minibatch_size: 100 # 500 sgd_minibatch_size: 100 # 500
num_sgd_iter: 10 num_sgd_iter: 10
num_workers: 7 num_workers: 7
num_envs_per_worker: 5 num_envs_per_worker: 5
batch_mode: truncate_episodes batch_mode: truncate_episodes
observation_filter: NoFilter observation_filter: NoFilter
vf_share_layers: True vf_share_layers: True
vf_loss_coeff: 0.5 vf_loss_coeff: 0.5
num_gpus: 1 num_gpus: 1
env_config: env_config:
min_seed: 1002 min_seed: 1002
max_seed: 213783 max_seed: 213783
min_test_seed: 0 min_test_seed: 0
max_test_seed: 100 max_test_seed: 100
# After how many episodes the level should be regenerated: # After how many episodes the level should be regenerated:
reset_env_freq: 1 reset_env_freq: 1
observation: tree observation: tree
observation_config: observation_config:
max_depth: 2 max_depth: 2
shortest_path_max_depth: 30 shortest_path_max_depth: 30
regenerate_rail_on_reset: True regenerate_rail_on_reset: True
regenerate_schedule_on_reset: True regenerate_schedule_on_reset: True
render: False render: False
model: model:
fcnet_activation: relu fcnet_activation: relu
fcnet_hiddens: [256, 256] fcnet_hiddens: [256, 256]
vf_share_layers: True # False vf_share_layers: True # False
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment